最大似然PET重建的隐藏数据空间

J. Fessler
{"title":"最大似然PET重建的隐藏数据空间","authors":"J. Fessler","doi":"10.1109/NSSMIC.1992.301014","DOIUrl":null,"url":null,"abstract":"The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET).<<ETX>>","PeriodicalId":447239,"journal":{"name":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","volume":"92 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hidden-data spaces for maximum-likelihood PET reconstruction\",\"authors\":\"J. Fessler\",\"doi\":\"10.1109/NSSMIC.1992.301014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET).<<ETX>>\",\"PeriodicalId\":447239,\"journal\":{\"name\":\"IEEE Conference on Nuclear Science Symposium and Medical Imaging\",\"volume\":\"92 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Nuclear Science Symposium and Medical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1992.301014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1992.301014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

作者表明,基于较小完整数据空间的期望最大化(EM)算法通常收敛速度更快。作为一个例子,他比较了D. G. Politte和D. L. Snyder(1991)的两种最大似然(ML)图像重建算法,这两种算法基于考虑正电子发射断层扫描(PET)中衰减和偶然巧合的测量模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden-data spaces for maximum-likelihood PET reconstruction
The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信