新型晶体和聚合物体系的单分子光谱

T. Basché, S. Kummer, R. Kettner, J. Tittel, C. Bräuchle
{"title":"新型晶体和聚合物体系的单分子光谱","authors":"T. Basché, S. Kummer, R. Kettner, J. Tittel, C. Bräuchle","doi":"10.1364/shbs.1994.wb3","DOIUrl":null,"url":null,"abstract":"Single molecule spectroscopy in solids at low temperature is a very rapidly growing field which due to the sensitivity of a single molecule to its truly local environment yields new insights in the structure and dynamics of crystalline and amorphous solids [1,2]. In the first years of SMS a lot of different experimental techniques have been applied to only a few well selected systems. These were the mixed crystalline system pentacene in p-terphenyl, and perylene and terrylene in poly(ethylene). Very recently, it was recognized by several groups that it is important to find new systems to demonstrate the more general applicability of this new and exciting spectroscopy. While there are several - well known - stringent requirements for any specific system to observe single molecule spectra with the fluorescence excitation technique, recent successful experiments proved that there is still a wide variety of systems where SMS can be pursued. Two new systems introduced lately were terrylene in the Shpol’skii matrix hexadecane [3] and Rhodamine 640 in (poly)ethylene [4]. In our group we investigated new crystalline as well as new polymeric systems.","PeriodicalId":443330,"journal":{"name":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Molecule Spectroscopy of Novel Crystalline and Polymeric Systems\",\"authors\":\"T. Basché, S. Kummer, R. Kettner, J. Tittel, C. Bräuchle\",\"doi\":\"10.1364/shbs.1994.wb3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single molecule spectroscopy in solids at low temperature is a very rapidly growing field which due to the sensitivity of a single molecule to its truly local environment yields new insights in the structure and dynamics of crystalline and amorphous solids [1,2]. In the first years of SMS a lot of different experimental techniques have been applied to only a few well selected systems. These were the mixed crystalline system pentacene in p-terphenyl, and perylene and terrylene in poly(ethylene). Very recently, it was recognized by several groups that it is important to find new systems to demonstrate the more general applicability of this new and exciting spectroscopy. While there are several - well known - stringent requirements for any specific system to observe single molecule spectra with the fluorescence excitation technique, recent successful experiments proved that there is still a wide variety of systems where SMS can be pursued. Two new systems introduced lately were terrylene in the Shpol’skii matrix hexadecane [3] and Rhodamine 640 in (poly)ethylene [4]. In our group we investigated new crystalline as well as new polymeric systems.\",\"PeriodicalId\":443330,\"journal\":{\"name\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/shbs.1994.wb3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/shbs.1994.wb3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低温下固体中的单分子光谱是一个非常迅速发展的领域,由于单分子对其真正的局部环境的敏感性,在晶体和非晶固体的结构和动力学方面产生了新的见解[1,2]。在SMS的最初几年里,许多不同的实验技术只应用于少数几个精心选择的系统。这是对苯中的并戊烯和聚乙烯中的苝和涤纶的混合结晶体系。最近,一些研究小组认识到,寻找新的系统来证明这种新的令人兴奋的光谱学的更普遍的适用性是很重要的。虽然用荧光激发技术观察单分子光谱对任何特定系统都有几个众所周知的严格要求,但最近成功的实验证明,仍然有各种各样的系统可以追求SMS。最近引入的两种新体系是Shpol 'skii矩阵中的涤纶十六烷[3]和(聚)乙烯中的罗丹明640[4]。在我们的小组中,我们研究了新的晶体和新的聚合物体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Molecule Spectroscopy of Novel Crystalline and Polymeric Systems
Single molecule spectroscopy in solids at low temperature is a very rapidly growing field which due to the sensitivity of a single molecule to its truly local environment yields new insights in the structure and dynamics of crystalline and amorphous solids [1,2]. In the first years of SMS a lot of different experimental techniques have been applied to only a few well selected systems. These were the mixed crystalline system pentacene in p-terphenyl, and perylene and terrylene in poly(ethylene). Very recently, it was recognized by several groups that it is important to find new systems to demonstrate the more general applicability of this new and exciting spectroscopy. While there are several - well known - stringent requirements for any specific system to observe single molecule spectra with the fluorescence excitation technique, recent successful experiments proved that there is still a wide variety of systems where SMS can be pursued. Two new systems introduced lately were terrylene in the Shpol’skii matrix hexadecane [3] and Rhodamine 640 in (poly)ethylene [4]. In our group we investigated new crystalline as well as new polymeric systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信