{"title":"克服科学应用中gpgpu计算的局限性","authors":"Connor Kenyon, Glenn Volkema, G. Khanna","doi":"10.1109/HPEC.2019.8916330","DOIUrl":null,"url":null,"abstract":"The performance of discrete general purpose graphics processing units (GPGPUs) has been improving at a rapid pace. The PCIe interconnect that controls the communication of data between the system host memory and the GPU has not improved as quickly, leaving a gap in performance due to GPU downtime while waiting for PCIe data transfer. In this article, we explore two alternatives to the limited PCIe bandwidth, NVIDIA NVLink interconnect, and zero-copy algorithms for shared memory Heterogeneous System Architecture (HSA) devices. The OpenCL SHOC benchmark suite is used to measure the performance of each device on various scientific application kernels.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overcoming Limitations of GPGPU-Computing in Scientific Applications\",\"authors\":\"Connor Kenyon, Glenn Volkema, G. Khanna\",\"doi\":\"10.1109/HPEC.2019.8916330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of discrete general purpose graphics processing units (GPGPUs) has been improving at a rapid pace. The PCIe interconnect that controls the communication of data between the system host memory and the GPU has not improved as quickly, leaving a gap in performance due to GPU downtime while waiting for PCIe data transfer. In this article, we explore two alternatives to the limited PCIe bandwidth, NVIDIA NVLink interconnect, and zero-copy algorithms for shared memory Heterogeneous System Architecture (HSA) devices. The OpenCL SHOC benchmark suite is used to measure the performance of each device on various scientific application kernels.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming Limitations of GPGPU-Computing in Scientific Applications
The performance of discrete general purpose graphics processing units (GPGPUs) has been improving at a rapid pace. The PCIe interconnect that controls the communication of data between the system host memory and the GPU has not improved as quickly, leaving a gap in performance due to GPU downtime while waiting for PCIe data transfer. In this article, we explore two alternatives to the limited PCIe bandwidth, NVIDIA NVLink interconnect, and zero-copy algorithms for shared memory Heterogeneous System Architecture (HSA) devices. The OpenCL SHOC benchmark suite is used to measure the performance of each device on various scientific application kernels.