使用GCD算法对多个观测值的模糊图像进行盲反卷积

M. Hadhoud, M. Dessouky, F. El-Samie, S. El-Khamy
{"title":"使用GCD算法对多个观测值的模糊图像进行盲反卷积","authors":"M. Hadhoud, M. Dessouky, F. El-Samie, S. El-Khamy","doi":"10.1109/NRSC.2001.929229","DOIUrl":null,"url":null,"abstract":"This paper suggests an approach for the 2-D blind deconvolution of more than two observations using the two-dimension greatest common divisor (GCD) algorithm. This approach benefits from the information in each observation at the same time instead of using only two observations at a time. The approach depends on forming a combinational image from the available observations and performing the 2-D GCD on this image with all observations and then averaging the results to obtain the estimated image. Results are presented to illustrate the superiority of the proposed method.","PeriodicalId":123517,"journal":{"name":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind deconvolution of blurred images from multiple observations using the GCD algorithm\",\"authors\":\"M. Hadhoud, M. Dessouky, F. El-Samie, S. El-Khamy\",\"doi\":\"10.1109/NRSC.2001.929229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper suggests an approach for the 2-D blind deconvolution of more than two observations using the two-dimension greatest common divisor (GCD) algorithm. This approach benefits from the information in each observation at the same time instead of using only two observations at a time. The approach depends on forming a combinational image from the available observations and performing the 2-D GCD on this image with all observations and then averaging the results to obtain the estimated image. Results are presented to illustrate the superiority of the proposed method.\",\"PeriodicalId\":123517,\"journal\":{\"name\":\"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2001.929229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighteenth National Radio Science Conference. NRSC'2001 (IEEE Cat. No.01EX462)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2001.929229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用二维最大公约数(GCD)算法对两个以上观测值进行二维盲反卷积的方法。这种方法的优点是同时利用每个观测值中的信息,而不是一次只使用两个观测值。该方法依赖于从可用的观测数据中形成一个组合图像,并对所有观测数据对该图像进行二维GCD,然后对结果进行平均以获得估计图像。实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind deconvolution of blurred images from multiple observations using the GCD algorithm
This paper suggests an approach for the 2-D blind deconvolution of more than two observations using the two-dimension greatest common divisor (GCD) algorithm. This approach benefits from the information in each observation at the same time instead of using only two observations at a time. The approach depends on forming a combinational image from the available observations and performing the 2-D GCD on this image with all observations and then averaging the results to obtain the estimated image. Results are presented to illustrate the superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信