交叉熵时间逻辑运动规划

S. Livingston, Eric M. Wolff, R. Murray
{"title":"交叉熵时间逻辑运动规划","authors":"S. Livingston, Eric M. Wolff, R. Murray","doi":"10.1145/2728606.2728635","DOIUrl":null,"url":null,"abstract":"This paper presents a method for optimal trajectory generation for discrete-time nonlinear systems with linear temporal logic (LTL) task specifications. Our approach is based on recent advances in stochastic optimization algorithms for optimal trajectory generation. These methods rely on estimation of the rare event of sampling optimal trajectories, which is achieved by incrementally improving a sampling distribution so as to minimize the cross-entropy. A key component of these stochastic optimization algorithms is determining whether or not a trajectory is collision-free. We generalize this collision checking to efficiently verify whether or not a trajectory satisfies a LTL formula. Interestingly, this verification can be done in time polynomial in the length of the LTL formula and the trajectory. We also propose a method for efficiently re-using parts of trajectories that only partially satisfy the specification, instead of simply discarding the entire sample. Our approach is demonstrated through numerical experiments involving Dubins car and a generic point-mass model subject to complex temporal logic task specifications.","PeriodicalId":377654,"journal":{"name":"Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Cross-entropy temporal logic motion planning\",\"authors\":\"S. Livingston, Eric M. Wolff, R. Murray\",\"doi\":\"10.1145/2728606.2728635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for optimal trajectory generation for discrete-time nonlinear systems with linear temporal logic (LTL) task specifications. Our approach is based on recent advances in stochastic optimization algorithms for optimal trajectory generation. These methods rely on estimation of the rare event of sampling optimal trajectories, which is achieved by incrementally improving a sampling distribution so as to minimize the cross-entropy. A key component of these stochastic optimization algorithms is determining whether or not a trajectory is collision-free. We generalize this collision checking to efficiently verify whether or not a trajectory satisfies a LTL formula. Interestingly, this verification can be done in time polynomial in the length of the LTL formula and the trajectory. We also propose a method for efficiently re-using parts of trajectories that only partially satisfy the specification, instead of simply discarding the entire sample. Our approach is demonstrated through numerical experiments involving Dubins car and a generic point-mass model subject to complex temporal logic task specifications.\",\"PeriodicalId\":377654,\"journal\":{\"name\":\"Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2728606.2728635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2728606.2728635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种具有线性时间逻辑(LTL)任务规范的离散非线性系统的最优轨迹生成方法。我们的方法是基于最优轨迹生成的随机优化算法的最新进展。这些方法依赖于采样最优轨迹罕见事件的估计,这是通过逐步改进采样分布以最小化交叉熵来实现的。这些随机优化算法的一个关键组成部分是确定轨迹是否无碰撞。我们将这种碰撞检查推广到有效地验证轨迹是否满足LTL公式。有趣的是,这种验证可以在LTL公式和轨迹的长度的时间多项式中完成。我们还提出了一种方法,可以有效地重用仅部分满足规范的轨迹部分,而不是简单地丢弃整个样本。我们的方法通过涉及杜宾汽车的数值实验和一个受复杂时间逻辑任务规范约束的通用点质量模型来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-entropy temporal logic motion planning
This paper presents a method for optimal trajectory generation for discrete-time nonlinear systems with linear temporal logic (LTL) task specifications. Our approach is based on recent advances in stochastic optimization algorithms for optimal trajectory generation. These methods rely on estimation of the rare event of sampling optimal trajectories, which is achieved by incrementally improving a sampling distribution so as to minimize the cross-entropy. A key component of these stochastic optimization algorithms is determining whether or not a trajectory is collision-free. We generalize this collision checking to efficiently verify whether or not a trajectory satisfies a LTL formula. Interestingly, this verification can be done in time polynomial in the length of the LTL formula and the trajectory. We also propose a method for efficiently re-using parts of trajectories that only partially satisfy the specification, instead of simply discarding the entire sample. Our approach is demonstrated through numerical experiments involving Dubins car and a generic point-mass model subject to complex temporal logic task specifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信