手-物交互推理

Jian Ma, D. Damen
{"title":"手-物交互推理","authors":"Jian Ma, D. Damen","doi":"10.1109/AVSS56176.2022.9959207","DOIUrl":null,"url":null,"abstract":"This paper proposes an interaction reasoning network for modelling spatio-temporal relationships between hands and objects in egocentric video. The proposed interaction unit utilises a Transformer-style module to reason about each acting hand, and its spatio-temporal relations to the other hand as well as objects being interacted with. We show that modelling two-handed interactions are critical for action recognition in egocentric video, and demonstrate that by using positionally-encoded trajectories, the network can better recognise observed interactions. We train and evaluate our proposed network on large-scale egocentric EPIC-KITCHENS-100 and crowd-sourced Something-Else datasets, with an ablation study to showcase our proposal.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hand-Object Interaction Reasoning\",\"authors\":\"Jian Ma, D. Damen\",\"doi\":\"10.1109/AVSS56176.2022.9959207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an interaction reasoning network for modelling spatio-temporal relationships between hands and objects in egocentric video. The proposed interaction unit utilises a Transformer-style module to reason about each acting hand, and its spatio-temporal relations to the other hand as well as objects being interacted with. We show that modelling two-handed interactions are critical for action recognition in egocentric video, and demonstrate that by using positionally-encoded trajectories, the network can better recognise observed interactions. We train and evaluate our proposed network on large-scale egocentric EPIC-KITCHENS-100 and crowd-sourced Something-Else datasets, with an ablation study to showcase our proposal.\",\"PeriodicalId\":408581,\"journal\":{\"name\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS56176.2022.9959207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种交互推理网络,用于模拟以自我为中心的视频中手与物体之间的时空关系。提议的交互单元利用一个变形金刚风格的模块来推断每只动作的手,以及它与另一只手的时空关系,以及与之交互的对象。我们证明了双手交互建模对于自我中心视频中的动作识别至关重要,并证明了通过使用位置编码的轨迹,网络可以更好地识别观察到的交互。我们在大规模以自我为中心的EPIC-KITCHENS-100和众包的Something-Else数据集上训练和评估我们提出的网络,并通过消融研究来展示我们的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand-Object Interaction Reasoning
This paper proposes an interaction reasoning network for modelling spatio-temporal relationships between hands and objects in egocentric video. The proposed interaction unit utilises a Transformer-style module to reason about each acting hand, and its spatio-temporal relations to the other hand as well as objects being interacted with. We show that modelling two-handed interactions are critical for action recognition in egocentric video, and demonstrate that by using positionally-encoded trajectories, the network can better recognise observed interactions. We train and evaluate our proposed network on large-scale egocentric EPIC-KITCHENS-100 and crowd-sourced Something-Else datasets, with an ablation study to showcase our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信