稀疏Lv分布及其在雷达低可观测机动目标检测中的应用

Xiaolong Chen, Xiaohan Yu, Hai Zhang, J. Guan
{"title":"稀疏Lv分布及其在雷达低可观测机动目标检测中的应用","authors":"Xiaolong Chen, Xiaohan Yu, Hai Zhang, J. Guan","doi":"10.23919/ACES48530.2019.9060758","DOIUrl":null,"url":null,"abstract":"Radar low-observable maneuvering target detection gives a severe challenge for radar signal processing not only because the time-varying Doppler which is difficult to integrate but also the big computational cost in case of large amount of time serials. In this paper, a novel representation, named as sparse Lv's distribution (SLVD), is proposed combining the well energy focus ability for maneuvering target of LVD and sparse representation with fast calculation of SFT. It can represent the maneuvering target in a sparse centroid frequency and chirp rate (SCFCR) domain with sparse coefficients. Simulations with real radar data show that the proposed method can work well for maneuvering target detection in clutter background compared with the filter bank based moving target detection (MTD), fractional Fourier transform (FRFT), and robust SFT (RSFT). It is simple and easy to implement with less computational burden.","PeriodicalId":247909,"journal":{"name":"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Lv's Distribution and Its Application for Radar Low-observable Maneuvering Target Detection\",\"authors\":\"Xiaolong Chen, Xiaohan Yu, Hai Zhang, J. Guan\",\"doi\":\"10.23919/ACES48530.2019.9060758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar low-observable maneuvering target detection gives a severe challenge for radar signal processing not only because the time-varying Doppler which is difficult to integrate but also the big computational cost in case of large amount of time serials. In this paper, a novel representation, named as sparse Lv's distribution (SLVD), is proposed combining the well energy focus ability for maneuvering target of LVD and sparse representation with fast calculation of SFT. It can represent the maneuvering target in a sparse centroid frequency and chirp rate (SCFCR) domain with sparse coefficients. Simulations with real radar data show that the proposed method can work well for maneuvering target detection in clutter background compared with the filter bank based moving target detection (MTD), fractional Fourier transform (FRFT), and robust SFT (RSFT). It is simple and easy to implement with less computational burden.\",\"PeriodicalId\":247909,\"journal\":{\"name\":\"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACES48530.2019.9060758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Applied Computational Electromagnetics Society Symposium - China (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACES48530.2019.9060758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

雷达低可观测机动目标检测给雷达信号处理带来了严峻的挑战,这不仅是因为时变多普勒信号难以积分,而且在大量时间序列情况下计算成本巨大。本文将稀疏吕氏分布(SLVD)与稀疏表示结合起来,结合了稀疏吕氏分布对机动目标的良好能量聚焦能力和快速计算SFT的特点,提出了一种新的吕氏分布表示。它可以用稀疏系数表示机动目标的稀疏质心频率和啁啾率(SCFCR)域。仿真结果表明,与基于滤波器组的运动目标检测(MTD)、分数阶傅立叶变换(FRFT)和鲁棒SFT (RSFT)方法相比,该方法能较好地检测杂波背景下的机动目标。该方法实现简单,易于实现,计算负担小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Lv's Distribution and Its Application for Radar Low-observable Maneuvering Target Detection
Radar low-observable maneuvering target detection gives a severe challenge for radar signal processing not only because the time-varying Doppler which is difficult to integrate but also the big computational cost in case of large amount of time serials. In this paper, a novel representation, named as sparse Lv's distribution (SLVD), is proposed combining the well energy focus ability for maneuvering target of LVD and sparse representation with fast calculation of SFT. It can represent the maneuvering target in a sparse centroid frequency and chirp rate (SCFCR) domain with sparse coefficients. Simulations with real radar data show that the proposed method can work well for maneuvering target detection in clutter background compared with the filter bank based moving target detection (MTD), fractional Fourier transform (FRFT), and robust SFT (RSFT). It is simple and easy to implement with less computational burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信