基于新闻推荐的混合协同过滤算法研究

Yao Dong, Shan Liu, Jianping Chai
{"title":"基于新闻推荐的混合协同过滤算法研究","authors":"Yao Dong, Shan Liu, Jianping Chai","doi":"10.1109/CISP-BMEI.2016.7852838","DOIUrl":null,"url":null,"abstract":"This paper introduced the personalized recommendation technology to the news system. In order to meet the demand of the users' personality and ease the problem of data sparse, the research work proposed the hybrid collaborative filtering algorithm based on news recommendation. It improved correlation coefficient formula by adding news hot parameter when calculating the similarity of users, and then used hybrid recommendation algorithm to forecast users' ratings to make user-rating matrix to non-zero values. Experimental results illustrated that the hybrid recommendation algorithm can effectively increase the accuracy and stability of recommendation so as to achieve better recommendation results.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Research of hybrid collaborative filtering algorithm based on news recommendation\",\"authors\":\"Yao Dong, Shan Liu, Jianping Chai\",\"doi\":\"10.1109/CISP-BMEI.2016.7852838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduced the personalized recommendation technology to the news system. In order to meet the demand of the users' personality and ease the problem of data sparse, the research work proposed the hybrid collaborative filtering algorithm based on news recommendation. It improved correlation coefficient formula by adding news hot parameter when calculating the similarity of users, and then used hybrid recommendation algorithm to forecast users' ratings to make user-rating matrix to non-zero values. Experimental results illustrated that the hybrid recommendation algorithm can effectively increase the accuracy and stability of recommendation so as to achieve better recommendation results.\",\"PeriodicalId\":275095,\"journal\":{\"name\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2016.7852838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文将个性化推荐技术引入新闻系统。为了满足用户个性需求和缓解数据稀疏问题,本研究提出了基于新闻推荐的混合协同过滤算法。在计算用户相似度时,通过增加新闻热点参数对相关系数公式进行改进,然后利用混合推荐算法预测用户评分,使用户评分矩阵趋于非零值。实验结果表明,混合推荐算法可以有效地提高推荐的准确性和稳定性,从而获得较好的推荐效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of hybrid collaborative filtering algorithm based on news recommendation
This paper introduced the personalized recommendation technology to the news system. In order to meet the demand of the users' personality and ease the problem of data sparse, the research work proposed the hybrid collaborative filtering algorithm based on news recommendation. It improved correlation coefficient formula by adding news hot parameter when calculating the similarity of users, and then used hybrid recommendation algorithm to forecast users' ratings to make user-rating matrix to non-zero values. Experimental results illustrated that the hybrid recommendation algorithm can effectively increase the accuracy and stability of recommendation so as to achieve better recommendation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信