基于贝叶斯网络的用户自适应汽车导航系统——个性化内容推荐

H. Iwasaki, N. Mizuno, K. Hara, Y. Motomura
{"title":"基于贝叶斯网络的用户自适应汽车导航系统——个性化内容推荐","authors":"H. Iwasaki, N. Mizuno, K. Hara, Y. Motomura","doi":"10.1109/ITST.2007.4295822","DOIUrl":null,"url":null,"abstract":"Recent car navigation systems now provide more content than ever. However, retrieving and selecting such content poses safety issues to users, especially drivers. Moreover, usability issues arise from simple user interfaces. Thus, it is important for the system to recommend content adapted to the user's preferences and situations automatically. In this paper, we analyze the validity of applying a Bayesian network to a user preference model of a content recommendation system in cars. We also present a practical way of building models using an information criterion as well as domain knowledge and an incremental learning method to adapt to individual users.","PeriodicalId":106396,"journal":{"name":"2007 7th International Conference on ITS Telecommunications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"User-Adapted Car Navigation System using a Bayesian Network -Personalized Recommendation of Content\",\"authors\":\"H. Iwasaki, N. Mizuno, K. Hara, Y. Motomura\",\"doi\":\"10.1109/ITST.2007.4295822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent car navigation systems now provide more content than ever. However, retrieving and selecting such content poses safety issues to users, especially drivers. Moreover, usability issues arise from simple user interfaces. Thus, it is important for the system to recommend content adapted to the user's preferences and situations automatically. In this paper, we analyze the validity of applying a Bayesian network to a user preference model of a content recommendation system in cars. We also present a practical way of building models using an information criterion as well as domain knowledge and an incremental learning method to adapt to individual users.\",\"PeriodicalId\":106396,\"journal\":{\"name\":\"2007 7th International Conference on ITS Telecommunications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th International Conference on ITS Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITST.2007.4295822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ITS Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITST.2007.4295822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近的汽车导航系统提供了比以往更多的内容。然而,检索和选择这样的内容会给用户,尤其是司机带来安全问题。此外,简单的用户界面会产生可用性问题。因此,系统自动推荐适合用户偏好和情况的内容是很重要的。本文分析了将贝叶斯网络应用于汽车内容推荐系统的用户偏好模型的有效性。我们还提出了一种实用的利用信息标准和领域知识构建模型的方法,以及一种适应个体用户的增量学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User-Adapted Car Navigation System using a Bayesian Network -Personalized Recommendation of Content
Recent car navigation systems now provide more content than ever. However, retrieving and selecting such content poses safety issues to users, especially drivers. Moreover, usability issues arise from simple user interfaces. Thus, it is important for the system to recommend content adapted to the user's preferences and situations automatically. In this paper, we analyze the validity of applying a Bayesian network to a user preference model of a content recommendation system in cars. We also present a practical way of building models using an information criterion as well as domain knowledge and an incremental learning method to adapt to individual users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信