{"title":"通过减压化学气相沉积在选择性过生长硅中形成小面","authors":"S. Song, S. Lee, B. Ryum, E. Yoon","doi":"10.1109/IMNC.1998.730061","DOIUrl":null,"url":null,"abstract":"Selective epitaxial growth (SEG) and epitaxial lateral overgrowth (ELO) of silicon have many applications in integrated circuit processing such as device isolation and self-aligned processes to enhance the integrated circuit performance as well as level of integration. However, in order for SEG to be applied for device fabrication, to the extent of production technology, reasonably high growth rate, high-quality epitaxial layers are prerequisite. Various facets were observed in the overgrown Si regions and it is known that the control of facet formation is important for subsequent device fabrication. (1 13) facets were primarily observed on (001) Si wafers, when SEG was made on Si window regions at high temperatures [1,2]. The mask patterns were along <110> direction. As SEG continued, some of SEG Si started to overgrow over the mask and (1 11) facets began to appear [2]. Recently, a (1 IO) facet was reported in SEG silicon due to the stress induced at the overgrown silicon [3], however, the detailed mechanism for the (1 IO) facet formation is not known.","PeriodicalId":356908,"journal":{"name":"Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facet Formation In Selectively Overgrown Silicon By Reduced Pressure Chemical Vapor Deposition\",\"authors\":\"S. Song, S. Lee, B. Ryum, E. Yoon\",\"doi\":\"10.1109/IMNC.1998.730061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective epitaxial growth (SEG) and epitaxial lateral overgrowth (ELO) of silicon have many applications in integrated circuit processing such as device isolation and self-aligned processes to enhance the integrated circuit performance as well as level of integration. However, in order for SEG to be applied for device fabrication, to the extent of production technology, reasonably high growth rate, high-quality epitaxial layers are prerequisite. Various facets were observed in the overgrown Si regions and it is known that the control of facet formation is important for subsequent device fabrication. (1 13) facets were primarily observed on (001) Si wafers, when SEG was made on Si window regions at high temperatures [1,2]. The mask patterns were along <110> direction. As SEG continued, some of SEG Si started to overgrow over the mask and (1 11) facets began to appear [2]. Recently, a (1 IO) facet was reported in SEG silicon due to the stress induced at the overgrown silicon [3], however, the detailed mechanism for the (1 IO) facet formation is not known.\",\"PeriodicalId\":356908,\"journal\":{\"name\":\"Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMNC.1998.730061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. Microprocesses and Nanotechnology'98. 198 International Microprocesses and Nanotechnology Conference (Cat. No.98EX135)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMNC.1998.730061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facet Formation In Selectively Overgrown Silicon By Reduced Pressure Chemical Vapor Deposition
Selective epitaxial growth (SEG) and epitaxial lateral overgrowth (ELO) of silicon have many applications in integrated circuit processing such as device isolation and self-aligned processes to enhance the integrated circuit performance as well as level of integration. However, in order for SEG to be applied for device fabrication, to the extent of production technology, reasonably high growth rate, high-quality epitaxial layers are prerequisite. Various facets were observed in the overgrown Si regions and it is known that the control of facet formation is important for subsequent device fabrication. (1 13) facets were primarily observed on (001) Si wafers, when SEG was made on Si window regions at high temperatures [1,2]. The mask patterns were along <110> direction. As SEG continued, some of SEG Si started to overgrow over the mask and (1 11) facets began to appear [2]. Recently, a (1 IO) facet was reported in SEG silicon due to the stress induced at the overgrown silicon [3], however, the detailed mechanism for the (1 IO) facet formation is not known.