{"title":"基于数字信号处理器的心音图系统的设计与开发","authors":"D. Balasubramaniam, D. Nedumaran","doi":"10.1109/ICSAP.2010.60","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time and cost effective system for the heart auscultation monitoring and hearing. The system design comprises of a Phonocardiographic pre-amplifier circuit with a TMS320C6711 Digital Signal Processor Starter kit (DSK) and its associated software. The Phonocardiogram signal from the pre-amplifier circuit is acquired through the CODEC input of the DSK and subjected to various signal processing techniques. Frequency analysis and component analysis are performed to identify the normal and pathological heart sound patterns using Short Time Fourier Transform (STFT) and Wavelet transform techniques respectively. To study the performance of the system, the analysis of heart sound patterns for various diseases were conducted. Finally the computational efficiency of the system was calculated by comparing the execution time of the algorithms in the proposed DSPPCG (Digital Signal Processor based Phonocardiogram) system with the PCPCG (PC based Phonocardiogram) system.","PeriodicalId":303366,"journal":{"name":"2010 International Conference on Signal Acquisition and Processing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design and Development of Digital Signal Processor Based Phonocardiogram System\",\"authors\":\"D. Balasubramaniam, D. Nedumaran\",\"doi\":\"10.1109/ICSAP.2010.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time and cost effective system for the heart auscultation monitoring and hearing. The system design comprises of a Phonocardiographic pre-amplifier circuit with a TMS320C6711 Digital Signal Processor Starter kit (DSK) and its associated software. The Phonocardiogram signal from the pre-amplifier circuit is acquired through the CODEC input of the DSK and subjected to various signal processing techniques. Frequency analysis and component analysis are performed to identify the normal and pathological heart sound patterns using Short Time Fourier Transform (STFT) and Wavelet transform techniques respectively. To study the performance of the system, the analysis of heart sound patterns for various diseases were conducted. Finally the computational efficiency of the system was calculated by comparing the execution time of the algorithms in the proposed DSPPCG (Digital Signal Processor based Phonocardiogram) system with the PCPCG (PC based Phonocardiogram) system.\",\"PeriodicalId\":303366,\"journal\":{\"name\":\"2010 International Conference on Signal Acquisition and Processing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Signal Acquisition and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAP.2010.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2010.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Development of Digital Signal Processor Based Phonocardiogram System
This paper presents a real-time and cost effective system for the heart auscultation monitoring and hearing. The system design comprises of a Phonocardiographic pre-amplifier circuit with a TMS320C6711 Digital Signal Processor Starter kit (DSK) and its associated software. The Phonocardiogram signal from the pre-amplifier circuit is acquired through the CODEC input of the DSK and subjected to various signal processing techniques. Frequency analysis and component analysis are performed to identify the normal and pathological heart sound patterns using Short Time Fourier Transform (STFT) and Wavelet transform techniques respectively. To study the performance of the system, the analysis of heart sound patterns for various diseases were conducted. Finally the computational efficiency of the system was calculated by comparing the execution time of the algorithms in the proposed DSPPCG (Digital Signal Processor based Phonocardiogram) system with the PCPCG (PC based Phonocardiogram) system.