用粒子群算法分析软件工作量估计数据集

Ahmad Setiadi, Wahyutama Fitri Hidayat, Ahmad Sinnun, Ade Setiawan, Muhammad Faisal, D. Alamsyah
{"title":"用粒子群算法分析软件工作量估计数据集","authors":"Ahmad Setiadi, Wahyutama Fitri Hidayat, Ahmad Sinnun, Ade Setiawan, Muhammad Faisal, D. Alamsyah","doi":"10.1109/ISITIA52817.2021.9502208","DOIUrl":null,"url":null,"abstract":"Software Effort Estimation is a software estimation process as an essential process in software projects. Many studies have been carried out regarding software estimation with various methods, including machine learning methods or non-machine learning methods. This research was conducted using a public data set and carried out through a Particle Swarm optimization attribute selection experiment on the project parameters using the K-NN algorithm as an estimate. The software estimation effort dataset used in this study is Desharnais, Maxwell, Kitchenham CSC, and Kamrer. The results of the study indicate that the Particle Swarm optimization feature selection can reduce the RMSE value and show a significant decrease in the RMSE value. This shows that the lower the RMSE value, the more precise the estimated value will be. This research is useful where it can be used as information for developers in estimating the time to build an application so that it is in accordance with the initial plan.","PeriodicalId":161240,"journal":{"name":"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analyze the Datasets of Software Effort Estimation With Particle Swarm Optimization\",\"authors\":\"Ahmad Setiadi, Wahyutama Fitri Hidayat, Ahmad Sinnun, Ade Setiawan, Muhammad Faisal, D. Alamsyah\",\"doi\":\"10.1109/ISITIA52817.2021.9502208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Effort Estimation is a software estimation process as an essential process in software projects. Many studies have been carried out regarding software estimation with various methods, including machine learning methods or non-machine learning methods. This research was conducted using a public data set and carried out through a Particle Swarm optimization attribute selection experiment on the project parameters using the K-NN algorithm as an estimate. The software estimation effort dataset used in this study is Desharnais, Maxwell, Kitchenham CSC, and Kamrer. The results of the study indicate that the Particle Swarm optimization feature selection can reduce the RMSE value and show a significant decrease in the RMSE value. This shows that the lower the RMSE value, the more precise the estimated value will be. This research is useful where it can be used as information for developers in estimating the time to build an application so that it is in accordance with the initial plan.\",\"PeriodicalId\":161240,\"journal\":{\"name\":\"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA52817.2021.9502208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA52817.2021.9502208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

软件工作量估算是一个软件评估过程,是软件项目中的一个重要过程。关于软件评估的各种方法已经进行了许多研究,包括机器学习方法或非机器学习方法。本研究采用公共数据集,采用K-NN算法对项目参数进行粒子群优化属性选择实验进行估计。本研究中使用的软件估算工作量数据集是Desharnais, Maxwell, Kitchenham CSC和Kamrer。研究结果表明,粒子群优化特征选择可以降低RMSE值,且RMSE值下降明显。这表明RMSE值越低,估计值越精确。这项研究非常有用,因为它可以作为开发人员估计构建应用程序所需时间的信息,从而使其符合初始计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyze the Datasets of Software Effort Estimation With Particle Swarm Optimization
Software Effort Estimation is a software estimation process as an essential process in software projects. Many studies have been carried out regarding software estimation with various methods, including machine learning methods or non-machine learning methods. This research was conducted using a public data set and carried out through a Particle Swarm optimization attribute selection experiment on the project parameters using the K-NN algorithm as an estimate. The software estimation effort dataset used in this study is Desharnais, Maxwell, Kitchenham CSC, and Kamrer. The results of the study indicate that the Particle Swarm optimization feature selection can reduce the RMSE value and show a significant decrease in the RMSE value. This shows that the lower the RMSE value, the more precise the estimated value will be. This research is useful where it can be used as information for developers in estimating the time to build an application so that it is in accordance with the initial plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信