三维点云语义分割,虚拟操纵真实生活空间

Yuki Ishikawa, Ryo Hachiuma, Naoto Ienaga, W. Kuno, Yuta Sugiura, H. Saito
{"title":"三维点云语义分割,虚拟操纵真实生活空间","authors":"Yuki Ishikawa, Ryo Hachiuma, Naoto Ienaga, W. Kuno, Yuta Sugiura, H. Saito","doi":"10.1109/APMAR.2019.8709156","DOIUrl":null,"url":null,"abstract":"This paper presents a method for the virtual manipulation of real living space using semantic segmentation of a 3D point cloud captured in the real world. We applied PointNet to segment each piece of furniture from the point cloud of a real indoor environment captured by moving a RGB-D camera. For semantic segmentation, we focused on local geometric information not used in PointNet, and we proposed a method to refine the class probability of labels attached to each point in PointNet’s output. The effectiveness of our method was experimentally confirmed. We then created 3D models of real-world furniture using a point cloud with corrected labels, and we virtually manipulated real living space using Dollhouse VR, a layout system.","PeriodicalId":156273,"journal":{"name":"2019 12th Asia Pacific Workshop on Mixed and Augmented Reality (APMAR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Semantic Segmentation of 3D Point Cloud to Virtually Manipulate Real Living Space\",\"authors\":\"Yuki Ishikawa, Ryo Hachiuma, Naoto Ienaga, W. Kuno, Yuta Sugiura, H. Saito\",\"doi\":\"10.1109/APMAR.2019.8709156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for the virtual manipulation of real living space using semantic segmentation of a 3D point cloud captured in the real world. We applied PointNet to segment each piece of furniture from the point cloud of a real indoor environment captured by moving a RGB-D camera. For semantic segmentation, we focused on local geometric information not used in PointNet, and we proposed a method to refine the class probability of labels attached to each point in PointNet’s output. The effectiveness of our method was experimentally confirmed. We then created 3D models of real-world furniture using a point cloud with corrected labels, and we virtually manipulated real living space using Dollhouse VR, a layout system.\",\"PeriodicalId\":156273,\"journal\":{\"name\":\"2019 12th Asia Pacific Workshop on Mixed and Augmented Reality (APMAR)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th Asia Pacific Workshop on Mixed and Augmented Reality (APMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMAR.2019.8709156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Asia Pacific Workshop on Mixed and Augmented Reality (APMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMAR.2019.8709156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种利用在现实世界中捕获的三维点云的语义分割对真实生活空间进行虚拟操作的方法。我们应用PointNet从移动RGB-D相机捕捉的真实室内环境的点云中分割出每件家具。在语义分割方面,我们关注PointNet中未使用的局部几何信息,并提出了一种方法来细化PointNet输出中每个点附加标签的类别概率。实验验证了该方法的有效性。然后,我们使用带有校正标签的点云创建了现实世界家具的3D模型,并使用玩偶之家VR(一种布局系统)虚拟地操纵了真实的生活空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Segmentation of 3D Point Cloud to Virtually Manipulate Real Living Space
This paper presents a method for the virtual manipulation of real living space using semantic segmentation of a 3D point cloud captured in the real world. We applied PointNet to segment each piece of furniture from the point cloud of a real indoor environment captured by moving a RGB-D camera. For semantic segmentation, we focused on local geometric information not used in PointNet, and we proposed a method to refine the class probability of labels attached to each point in PointNet’s output. The effectiveness of our method was experimentally confirmed. We then created 3D models of real-world furniture using a point cloud with corrected labels, and we virtually manipulated real living space using Dollhouse VR, a layout system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信