用状态空间方法研究微极流体在右圆柱内的非定常旋转运动

S. Slayi, E. Ashmawy
{"title":"用状态空间方法研究微极流体在右圆柱内的非定常旋转运动","authors":"S. Slayi, E. Ashmawy","doi":"10.54729/2706-784x.1026","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the unsteady rotational motion of an incompressible micropolar fluid inside a right circular cylinder is investigated. The classical no-slip and no-spin boundary conditions are proposed. The problem is solved analytically using the state space approach together with Laplace transform technique. The inverse Laplace transform is carried out numerically using a numerical technique based on Fourier series expansion. Numerical results for the flow field functions are represented graphically for different values of the time and micropolarity parameters.","PeriodicalId":124185,"journal":{"name":"BAU Journal - Science and Technology","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNSTEADY ROTATIONAL MOTION OF A MICROPOLAR FLUID INSIDE A RIGHT CIRCULAR CYLINDER USING STATE SPACE APPROACH\",\"authors\":\"S. Slayi, E. Ashmawy\",\"doi\":\"10.54729/2706-784x.1026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the unsteady rotational motion of an incompressible micropolar fluid inside a right circular cylinder is investigated. The classical no-slip and no-spin boundary conditions are proposed. The problem is solved analytically using the state space approach together with Laplace transform technique. The inverse Laplace transform is carried out numerically using a numerical technique based on Fourier series expansion. Numerical results for the flow field functions are represented graphically for different values of the time and micropolarity parameters.\",\"PeriodicalId\":124185,\"journal\":{\"name\":\"BAU Journal - Science and Technology\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BAU Journal - Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54729/2706-784x.1026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BAU Journal - Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54729/2706-784x.1026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了不可压缩微极流体在右圆柱内的非定常旋转运动。提出了经典的无滑移和无自旋边界条件。利用状态空间方法结合拉普拉斯变换技术对该问题进行了解析求解。利用基于傅里叶级数展开的数值技术对拉普拉斯逆变换进行了数值求解。用图形表示了不同时间和微极性参数值下流场函数的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNSTEADY ROTATIONAL MOTION OF A MICROPOLAR FLUID INSIDE A RIGHT CIRCULAR CYLINDER USING STATE SPACE APPROACH
Abstract In this work, the unsteady rotational motion of an incompressible micropolar fluid inside a right circular cylinder is investigated. The classical no-slip and no-spin boundary conditions are proposed. The problem is solved analytically using the state space approach together with Laplace transform technique. The inverse Laplace transform is carried out numerically using a numerical technique based on Fourier series expansion. Numerical results for the flow field functions are represented graphically for different values of the time and micropolarity parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信