深度神经网络的黑盒测试

Taejoon Byun, Sanjai Rayadurgam, M. Heimdahl
{"title":"深度神经网络的黑盒测试","authors":"Taejoon Byun, Sanjai Rayadurgam, M. Heimdahl","doi":"10.1109/ISSRE52982.2021.00041","DOIUrl":null,"url":null,"abstract":"Several test adequacy criteria have been developed for quantifying the the coverage of deep neural networks (DNNs) achieved by a test suite. Being dependent on the structure of the DNN, these can be costly to measure and use, especially given the highly iterative nature of the model training workflow. Further, testing provides higher overall assurance when such implementation dependent measures are used along with implementation independent ones. In this paper, we rigorously define a new black-box coverage criterion that is independent of the DNN model under test. We further describe a few desirable properties and associated evaluation metrics for assessing test coverage criteria and use those to empirically compare and contrast the black-box criterion with several DNN structural coverage criteria. Results indicate that the black-box criterion has comparable effectiveness and provides benefits that complement white-box criteria. The results also reveal a few weaknesses of coverage criteria for DNNs.","PeriodicalId":162410,"journal":{"name":"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Black-Box Testing of Deep Neural Networks\",\"authors\":\"Taejoon Byun, Sanjai Rayadurgam, M. Heimdahl\",\"doi\":\"10.1109/ISSRE52982.2021.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several test adequacy criteria have been developed for quantifying the the coverage of deep neural networks (DNNs) achieved by a test suite. Being dependent on the structure of the DNN, these can be costly to measure and use, especially given the highly iterative nature of the model training workflow. Further, testing provides higher overall assurance when such implementation dependent measures are used along with implementation independent ones. In this paper, we rigorously define a new black-box coverage criterion that is independent of the DNN model under test. We further describe a few desirable properties and associated evaluation metrics for assessing test coverage criteria and use those to empirically compare and contrast the black-box criterion with several DNN structural coverage criteria. Results indicate that the black-box criterion has comparable effectiveness and provides benefits that complement white-box criteria. The results also reveal a few weaknesses of coverage criteria for DNNs.\",\"PeriodicalId\":162410,\"journal\":{\"name\":\"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE52982.2021.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE52982.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了量化测试套件所达到的深度神经网络(dnn)的覆盖范围,已经开发了几个测试充分性标准。由于依赖于深度神经网络的结构,这些测量和使用成本可能很高,特别是考虑到模型训练工作流的高度迭代性质。此外,当这些依赖于实现的度量与独立于实现的度量一起使用时,测试提供了更高的总体保证。在本文中,我们严格定义了一个新的黑盒覆盖准则,该准则独立于被测深度神经网络模型。我们进一步描述了评估测试覆盖标准的一些理想属性和相关的评估度量,并使用这些来经验地比较和对比黑盒标准与几个DNN结构覆盖标准。结果表明,黑盒标准具有相当的有效性,并提供了补充白盒标准的好处。结果还揭示了dnn覆盖标准的一些弱点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black-Box Testing of Deep Neural Networks
Several test adequacy criteria have been developed for quantifying the the coverage of deep neural networks (DNNs) achieved by a test suite. Being dependent on the structure of the DNN, these can be costly to measure and use, especially given the highly iterative nature of the model training workflow. Further, testing provides higher overall assurance when such implementation dependent measures are used along with implementation independent ones. In this paper, we rigorously define a new black-box coverage criterion that is independent of the DNN model under test. We further describe a few desirable properties and associated evaluation metrics for assessing test coverage criteria and use those to empirically compare and contrast the black-box criterion with several DNN structural coverage criteria. Results indicate that the black-box criterion has comparable effectiveness and provides benefits that complement white-box criteria. The results also reveal a few weaknesses of coverage criteria for DNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信