从不规则结构生成分段规则代码

T. Augustine, Janarthanan Sarma, L. Pouchet, Gabriel Rodríguez
{"title":"从不规则结构生成分段规则代码","authors":"T. Augustine, Janarthanan Sarma, L. Pouchet, Gabriel Rodríguez","doi":"10.1145/3314221.3314615","DOIUrl":null,"url":null,"abstract":"Irregular data structures, as exemplified with sparse matrices, have proved to be essential in modern computing. Numerous sparse formats have been investigated to improve the overall performance of Sparse Matrix-Vector multiply (SpMV). But in this work we propose instead to take a fundamentally different approach: to automatically build sets of regular sub-computations by mining for regular sub-regions in the irregular data structure. Our approach leads to code that is specialized to the sparsity structure of the input matrix, but which does not need anymore any indirection array, thereby improving SIMD vectorizability. We particularly focus on small sparse structures (below 10M nonzeros), and demonstrate substantial performance improvements and compaction capabilities compared to a classical CSR implementation and Intel MKL IE's SpMV implementation, evaluating on 200+ different matrices from the SuiteSparse repository.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Generating piecewise-regular code from irregular structures\",\"authors\":\"T. Augustine, Janarthanan Sarma, L. Pouchet, Gabriel Rodríguez\",\"doi\":\"10.1145/3314221.3314615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irregular data structures, as exemplified with sparse matrices, have proved to be essential in modern computing. Numerous sparse formats have been investigated to improve the overall performance of Sparse Matrix-Vector multiply (SpMV). But in this work we propose instead to take a fundamentally different approach: to automatically build sets of regular sub-computations by mining for regular sub-regions in the irregular data structure. Our approach leads to code that is specialized to the sparsity structure of the input matrix, but which does not need anymore any indirection array, thereby improving SIMD vectorizability. We particularly focus on small sparse structures (below 10M nonzeros), and demonstrate substantial performance improvements and compaction capabilities compared to a classical CSR implementation and Intel MKL IE's SpMV implementation, evaluating on 200+ different matrices from the SuiteSparse repository.\",\"PeriodicalId\":441774,\"journal\":{\"name\":\"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314221.3314615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

不规则数据结构,如稀疏矩阵的例子,已被证明是现代计算中必不可少的。为了提高稀疏矩阵向量乘法(SpMV)的整体性能,研究了多种稀疏格式。但在这项工作中,我们建议采取一种根本不同的方法:通过挖掘不规则数据结构中的规则子区域来自动构建规则子计算集。我们的方法产生了专门用于输入矩阵稀疏结构的代码,但不再需要任何间接数组,从而提高了SIMD向量化能力。我们特别关注小型稀疏结构(小于10M的非零结构),并演示了与经典CSR实现和英特尔MKL IE的SpMV实现相比的实质性性能改进和压缩能力,在来自SuiteSparse存储库的200多个不同矩阵上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating piecewise-regular code from irregular structures
Irregular data structures, as exemplified with sparse matrices, have proved to be essential in modern computing. Numerous sparse formats have been investigated to improve the overall performance of Sparse Matrix-Vector multiply (SpMV). But in this work we propose instead to take a fundamentally different approach: to automatically build sets of regular sub-computations by mining for regular sub-regions in the irregular data structure. Our approach leads to code that is specialized to the sparsity structure of the input matrix, but which does not need anymore any indirection array, thereby improving SIMD vectorizability. We particularly focus on small sparse structures (below 10M nonzeros), and demonstrate substantial performance improvements and compaction capabilities compared to a classical CSR implementation and Intel MKL IE's SpMV implementation, evaluating on 200+ different matrices from the SuiteSparse repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信