无法解释的间隙和瓦哈卡-布林德分解

Todd E. Elder, J. Goddeeris, Steven J. Haider
{"title":"无法解释的间隙和瓦哈卡-布林德分解","authors":"Todd E. Elder, J. Goddeeris, Steven J. Haider","doi":"10.2139/ssrn.1342576","DOIUrl":null,"url":null,"abstract":"We analyze four methods to measure unexplained gaps in mean outcomes: three decompositions based on the seminal work of Oaxaca (1973) and Blinder (1973) and an approach involving a seemingly naive regression that includes a group indicator variable. Our analysis yields two principal findings. We show that the coefficient on a group indicator variable from an OLS regression is an attractive approach for obtaining a single measure of the unexplained gap. We also show that a commonly-used pooling decomposition systematically overstates the contribution of observable characteristics to mean outcome differences when compared to OLS regression, therefore understating unexplained differences. We then provide three empirical examples that explore the practical importance of our analytic results.","PeriodicalId":142467,"journal":{"name":"Labor: Human Capital","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":"{\"title\":\"Unexplained Gaps and Oaxaca-Blinder Decompositions\",\"authors\":\"Todd E. Elder, J. Goddeeris, Steven J. Haider\",\"doi\":\"10.2139/ssrn.1342576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze four methods to measure unexplained gaps in mean outcomes: three decompositions based on the seminal work of Oaxaca (1973) and Blinder (1973) and an approach involving a seemingly naive regression that includes a group indicator variable. Our analysis yields two principal findings. We show that the coefficient on a group indicator variable from an OLS regression is an attractive approach for obtaining a single measure of the unexplained gap. We also show that a commonly-used pooling decomposition systematically overstates the contribution of observable characteristics to mean outcome differences when compared to OLS regression, therefore understating unexplained differences. We then provide three empirical examples that explore the practical importance of our analytic results.\",\"PeriodicalId\":142467,\"journal\":{\"name\":\"Labor: Human Capital\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"185\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Labor: Human Capital\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1342576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Labor: Human Capital","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1342576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 185

摘要

我们分析了四种方法来测量平均结果中无法解释的差距:基于瓦哈卡(1973)和布林德(1973)开创性工作的三种分解方法,以及一种涉及包括组指标变量的看似朴素回归的方法。我们的分析得出了两个主要发现。我们表明,从OLS回归中获得组指标变量的系数是获得无法解释的差距的单一度量的有吸引力的方法。我们还表明,与OLS回归相比,常用的池化分解系统地夸大了可观察特征对平均结果差异的贡献,因此低估了无法解释的差异。然后,我们提供了三个实证例子来探讨我们的分析结果的实际重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unexplained Gaps and Oaxaca-Blinder Decompositions
We analyze four methods to measure unexplained gaps in mean outcomes: three decompositions based on the seminal work of Oaxaca (1973) and Blinder (1973) and an approach involving a seemingly naive regression that includes a group indicator variable. Our analysis yields two principal findings. We show that the coefficient on a group indicator variable from an OLS regression is an attractive approach for obtaining a single measure of the unexplained gap. We also show that a commonly-used pooling decomposition systematically overstates the contribution of observable characteristics to mean outcome differences when compared to OLS regression, therefore understating unexplained differences. We then provide three empirical examples that explore the practical importance of our analytic results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信