旋翼机-驾驶员耦合中飞行控制和座舱布局设计的影响:一种计算方法

A. Cocco, A. Zanoni, V. Muscarello, P. Masarati
{"title":"旋翼机-驾驶员耦合中飞行控制和座舱布局设计的影响:一种计算方法","authors":"A. Cocco, A. Zanoni, V. Muscarello, P. Masarati","doi":"10.1115/detc2020-22304","DOIUrl":null,"url":null,"abstract":"\n Rotorcraft-Pilot-Coupling (RPC) is a dynamic phenomenon in which the rotorcraft vibrations are transmitted through the cockpit, the seat and the control inceptors to the helicopter pilot and to the passengers. Handling qualities are affected by the proneness of the of rotorcraft to give rise to adverse interactions, an unwanted quality that can be captured by the so called biodynamic feedthrough. In this work, a multibody model of the whole upper body, developed by the authors, is used in order of evaluate the effects of several parameters influencing cockpit layout design: namely, the pilot seat backrest angle, compliance, and connection to the cockpit floor. As a representative parameter of the flight controls design, the effects related to the characteristics of the trim spring is also investigated. Simulations encompass subjects of different anthropometric data, in order to represent possible intra-subject variations. Biomechanical feedthroughs at the collective and cyclic commands, in response to vertical acceleration inputs, are discussed, along with single-harmonic, high magnitude input responses that highlight the presence and importance of nonlinear effects.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Flight Controls and Cockpit Layout Design in Rotorcraft-Pilot Couplings: A Computational Approach\",\"authors\":\"A. Cocco, A. Zanoni, V. Muscarello, P. Masarati\",\"doi\":\"10.1115/detc2020-22304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rotorcraft-Pilot-Coupling (RPC) is a dynamic phenomenon in which the rotorcraft vibrations are transmitted through the cockpit, the seat and the control inceptors to the helicopter pilot and to the passengers. Handling qualities are affected by the proneness of the of rotorcraft to give rise to adverse interactions, an unwanted quality that can be captured by the so called biodynamic feedthrough. In this work, a multibody model of the whole upper body, developed by the authors, is used in order of evaluate the effects of several parameters influencing cockpit layout design: namely, the pilot seat backrest angle, compliance, and connection to the cockpit floor. As a representative parameter of the flight controls design, the effects related to the characteristics of the trim spring is also investigated. Simulations encompass subjects of different anthropometric data, in order to represent possible intra-subject variations. Biomechanical feedthroughs at the collective and cyclic commands, in response to vertical acceleration inputs, are discussed, along with single-harmonic, high magnitude input responses that highlight the presence and importance of nonlinear effects.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旋翼机-驾驶员-耦合(RPC)是旋翼机振动通过座舱、座椅和控制接收器传递给飞行员和乘客的一种动态现象。操纵质量受到旋翼机的倾向性的影响,从而产生不利的相互作用,这是一种不必要的质量,可以通过所谓的生物动力馈通来捕获。在这项工作中,使用作者开发的整个上半身的多体模型来评估影响座舱布局设计的几个参数的影响:即飞行员座椅靠背角度、顺应性和与座舱地板的连接。作为飞行控制设计的代表性参数,本文还研究了其特性对飞行控制设计的影响。模拟包含不同人体测量数据的受试者,以表示可能的受试者内部变化。讨论了响应垂直加速度输入的集体和循环指令的生物力学反馈,以及强调非线性效应存在和重要性的单次谐波、高幅度输入响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Flight Controls and Cockpit Layout Design in Rotorcraft-Pilot Couplings: A Computational Approach
Rotorcraft-Pilot-Coupling (RPC) is a dynamic phenomenon in which the rotorcraft vibrations are transmitted through the cockpit, the seat and the control inceptors to the helicopter pilot and to the passengers. Handling qualities are affected by the proneness of the of rotorcraft to give rise to adverse interactions, an unwanted quality that can be captured by the so called biodynamic feedthrough. In this work, a multibody model of the whole upper body, developed by the authors, is used in order of evaluate the effects of several parameters influencing cockpit layout design: namely, the pilot seat backrest angle, compliance, and connection to the cockpit floor. As a representative parameter of the flight controls design, the effects related to the characteristics of the trim spring is also investigated. Simulations encompass subjects of different anthropometric data, in order to represent possible intra-subject variations. Biomechanical feedthroughs at the collective and cyclic commands, in response to vertical acceleration inputs, are discussed, along with single-harmonic, high magnitude input responses that highlight the presence and importance of nonlinear effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信