基于Blaschke产品的合理小波滤波器组

Xuefeng Wang
{"title":"基于Blaschke产品的合理小波滤波器组","authors":"Xuefeng Wang","doi":"10.1142/s0219691322500424","DOIUrl":null,"url":null,"abstract":"This note designs two kinds of rational wavelet filter banks using three basic bricks: the finite Blaschke product, Bezout polynomial and the symbol of the cardinal B-spline. In orthogonal case, the corresponding wavelets are generalization of Daubechies’ wavelets. The role of the Blaschke product is the adjustment of the peaks of wavelet functions.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational wavelet filter banks from Blaschke product\",\"authors\":\"Xuefeng Wang\",\"doi\":\"10.1142/s0219691322500424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note designs two kinds of rational wavelet filter banks using three basic bricks: the finite Blaschke product, Bezout polynomial and the symbol of the cardinal B-spline. In orthogonal case, the corresponding wavelets are generalization of Daubechies’ wavelets. The role of the Blaschke product is the adjustment of the peaks of wavelet functions.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691322500424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691322500424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用有限Blaschke积、Bezout多项式和基数b样条符号这三个基本块设计了两种有理小波滤波器组。在正交情况下,相应的小波是Daubechies小波的推广。Blaschke积的作用是对小波函数的峰值进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational wavelet filter banks from Blaschke product
This note designs two kinds of rational wavelet filter banks using three basic bricks: the finite Blaschke product, Bezout polynomial and the symbol of the cardinal B-spline. In orthogonal case, the corresponding wavelets are generalization of Daubechies’ wavelets. The role of the Blaschke product is the adjustment of the peaks of wavelet functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信