通过手部人体测量数据进行性别识别的有监督和无监督机器学习

Nahid Hida, Mohamed Abid, F. Lakrad
{"title":"通过手部人体测量数据进行性别识别的有监督和无监督机器学习","authors":"Nahid Hida, Mohamed Abid, F. Lakrad","doi":"10.1504/ijbm.2020.10030182","DOIUrl":null,"url":null,"abstract":"The goal of this study is to determine the best gender identifiers from the hand anthropometric measurements. Five algorithms are used and their performances quantified. The first algorithm is based on computing distances of test subjects to pre-computed masculine/feminine mean characteristics. Then, the k-nearest neighbours, the K-means algorithms, the linear and the quadratic discriminant techniques are applied to segregate males and females. To select the relevant attributes, the recursive feature elimination and the stepwise regression methods are used. All these methods are leading to high accuracy rates of genders recognition. However, the linear and quadratic discriminant methods are the most accurate. Breadth and circumference features are better than the length features in identifying the gender. The palm and the thumb are the parts of the hand with the highest rate of gender recognition. Breadths of the index and the thumb and the palm circumference are the best individual identifiers.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised and unsupervised machine learning for gender identification through hand's anthropometric data\",\"authors\":\"Nahid Hida, Mohamed Abid, F. Lakrad\",\"doi\":\"10.1504/ijbm.2020.10030182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study is to determine the best gender identifiers from the hand anthropometric measurements. Five algorithms are used and their performances quantified. The first algorithm is based on computing distances of test subjects to pre-computed masculine/feminine mean characteristics. Then, the k-nearest neighbours, the K-means algorithms, the linear and the quadratic discriminant techniques are applied to segregate males and females. To select the relevant attributes, the recursive feature elimination and the stepwise regression methods are used. All these methods are leading to high accuracy rates of genders recognition. However, the linear and quadratic discriminant methods are the most accurate. Breadth and circumference features are better than the length features in identifying the gender. The palm and the thumb are the parts of the hand with the highest rate of gender recognition. Breadths of the index and the thumb and the palm circumference are the best individual identifiers.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbm.2020.10030182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.10030182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过手部人体测量来确定最佳的性别识别。采用了五种算法,并对其性能进行了量化。第一种算法是基于计算测试对象到预先计算的男性/女性平均特征的距离。然后,应用k近邻、k均值算法、线性和二次判别技术来隔离雄性和雌性。采用递归特征消去法和逐步回归法选择相关属性。所有这些方法都使得性别识别的准确率很高。然而,线性和二次判别方法是最准确的。宽度和周长特征在识别性别方面优于长度特征。手掌和拇指是手部性别识别率最高的部位。食指和拇指的宽度以及手掌的周长是最好的个体标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised and unsupervised machine learning for gender identification through hand's anthropometric data
The goal of this study is to determine the best gender identifiers from the hand anthropometric measurements. Five algorithms are used and their performances quantified. The first algorithm is based on computing distances of test subjects to pre-computed masculine/feminine mean characteristics. Then, the k-nearest neighbours, the K-means algorithms, the linear and the quadratic discriminant techniques are applied to segregate males and females. To select the relevant attributes, the recursive feature elimination and the stepwise regression methods are used. All these methods are leading to high accuracy rates of genders recognition. However, the linear and quadratic discriminant methods are the most accurate. Breadth and circumference features are better than the length features in identifying the gender. The palm and the thumb are the parts of the hand with the highest rate of gender recognition. Breadths of the index and the thumb and the palm circumference are the best individual identifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信