应用迁移学习识别服装模式使用手指安装的相机

Lee Stearns, Leah Findlater, Jon E. Froehlich
{"title":"应用迁移学习识别服装模式使用手指安装的相机","authors":"Lee Stearns, Leah Findlater, Jon E. Froehlich","doi":"10.1145/3234695.3241015","DOIUrl":null,"url":null,"abstract":"Color identification tools do not identify visual patterns or allow users to quickly inspect multiple locations, which are both important for identifying clothing. We are exploring the use of a finger-based camera that allows users to query clothing colors and patterns by touch. Previously, we demonstrated the feasibility of this approach using a small, highly-controlled dataset and combining two image classification techniques commonly used for object recognition. Here, to improve scalability and robustness, we collect a dataset of fabric images from online sources and apply transfer learning to train an end-to-end deep neural network to recognize visual patterns. This new approach achieves 92% accuracy in a general case and 97% when tuned for images from a finger-mounted camera.","PeriodicalId":110197,"journal":{"name":"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Applying Transfer Learning to Recognize Clothing Patterns Using a Finger-Mounted Camera\",\"authors\":\"Lee Stearns, Leah Findlater, Jon E. Froehlich\",\"doi\":\"10.1145/3234695.3241015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color identification tools do not identify visual patterns or allow users to quickly inspect multiple locations, which are both important for identifying clothing. We are exploring the use of a finger-based camera that allows users to query clothing colors and patterns by touch. Previously, we demonstrated the feasibility of this approach using a small, highly-controlled dataset and combining two image classification techniques commonly used for object recognition. Here, to improve scalability and robustness, we collect a dataset of fabric images from online sources and apply transfer learning to train an end-to-end deep neural network to recognize visual patterns. This new approach achieves 92% accuracy in a general case and 97% when tuned for images from a finger-mounted camera.\",\"PeriodicalId\":110197,\"journal\":{\"name\":\"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234695.3241015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234695.3241015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

颜色识别工具不能识别视觉模式或允许用户快速检查多个位置,这对于识别服装都很重要。我们正在探索使用一种基于手指的摄像头,用户可以通过触摸来查询衣服的颜色和图案。之前,我们使用一个小型的、高度控制的数据集,并结合两种通常用于对象识别的图像分类技术,证明了这种方法的可行性。为了提高可扩展性和鲁棒性,我们从在线资源中收集织物图像数据集,并应用迁移学习来训练端到端深度神经网络来识别视觉模式。这种新方法在一般情况下达到92%的准确率,当调整到来自手指安装的相机的图像时达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Transfer Learning to Recognize Clothing Patterns Using a Finger-Mounted Camera
Color identification tools do not identify visual patterns or allow users to quickly inspect multiple locations, which are both important for identifying clothing. We are exploring the use of a finger-based camera that allows users to query clothing colors and patterns by touch. Previously, we demonstrated the feasibility of this approach using a small, highly-controlled dataset and combining two image classification techniques commonly used for object recognition. Here, to improve scalability and robustness, we collect a dataset of fabric images from online sources and apply transfer learning to train an end-to-end deep neural network to recognize visual patterns. This new approach achieves 92% accuracy in a general case and 97% when tuned for images from a finger-mounted camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信