考虑估计误差的多天线高斯广播信道容量区域研究

A. Dana, M. Sharif, B. Hassibi
{"title":"考虑估计误差的多天线高斯广播信道容量区域研究","authors":"A. Dana, M. Sharif, B. Hassibi","doi":"10.1109/ISIT.2006.261755","DOIUrl":null,"url":null,"abstract":"In this paper we consider the effect of channel estimation error on the capacity region of MIMO Gaussian broadcast channels. It is assumed that the receivers and the transmitter have (the same) estimates of the channel coefficients (i.e., the feedback channel is noiseless). We obtain an achievable rate region based on the dirty paper coding scheme. We show that this region is given by the capacity region of a dual multi-access channel with a noise covariance that depends on the transmit power. We explore this duality to give the asymptotic behavior of the sum-rate for a system with a large number of user, i.e., n rarr infin. It is shown that as long as the estimation error is of fixed (w.r.t n) variance, the sum-capacity is of order M log log n, where M is the number of antennas deployed at the transmitter. We further obtain the sum-rate loss due to the estimation error. Finally, we consider a training-based scheme for block fading MISO Gaussian broadcast channels. We find the optimum length of the training interval as well as the optimum power used for training in order to maximize the achievable sum-rate","PeriodicalId":115298,"journal":{"name":"2006 IEEE International Symposium on Information Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"On the Capacity Region of Multi-Antenna Gaussian Broadcast Channels with Estimation Error\",\"authors\":\"A. Dana, M. Sharif, B. Hassibi\",\"doi\":\"10.1109/ISIT.2006.261755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the effect of channel estimation error on the capacity region of MIMO Gaussian broadcast channels. It is assumed that the receivers and the transmitter have (the same) estimates of the channel coefficients (i.e., the feedback channel is noiseless). We obtain an achievable rate region based on the dirty paper coding scheme. We show that this region is given by the capacity region of a dual multi-access channel with a noise covariance that depends on the transmit power. We explore this duality to give the asymptotic behavior of the sum-rate for a system with a large number of user, i.e., n rarr infin. It is shown that as long as the estimation error is of fixed (w.r.t n) variance, the sum-capacity is of order M log log n, where M is the number of antennas deployed at the transmitter. We further obtain the sum-rate loss due to the estimation error. Finally, we consider a training-based scheme for block fading MISO Gaussian broadcast channels. We find the optimum length of the training interval as well as the optimum power used for training in order to maximize the achievable sum-rate\",\"PeriodicalId\":115298,\"journal\":{\"name\":\"2006 IEEE International Symposium on Information Theory\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2006.261755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2006.261755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文研究了信道估计误差对MIMO高斯广播信道容量区域的影响。假设接收机和发射机对信道系数有(相同的)估计(即,反馈信道是无噪声的)。基于脏纸编码方案,得到了一个可实现的速率区域。我们证明了该区域由双多址信道的容量区域给出,噪声协方差依赖于发射功率。我们探讨了这一对偶性,给出了一个具有大量用户的系统的和率的渐近行为,即n rarr无穷大。结果表明,只要估计误差为固定方差(w.r.t.n),则容量总和为M阶log log n,其中M为发射机处部署的天线数。进一步得到了由于估计误差造成的和速率损失。最后,我们考虑了一种基于训练的块衰落MISO高斯广播信道方案。我们找到了训练间隔的最佳长度以及用于训练的最佳功率,以最大化可实现的和速率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Capacity Region of Multi-Antenna Gaussian Broadcast Channels with Estimation Error
In this paper we consider the effect of channel estimation error on the capacity region of MIMO Gaussian broadcast channels. It is assumed that the receivers and the transmitter have (the same) estimates of the channel coefficients (i.e., the feedback channel is noiseless). We obtain an achievable rate region based on the dirty paper coding scheme. We show that this region is given by the capacity region of a dual multi-access channel with a noise covariance that depends on the transmit power. We explore this duality to give the asymptotic behavior of the sum-rate for a system with a large number of user, i.e., n rarr infin. It is shown that as long as the estimation error is of fixed (w.r.t n) variance, the sum-capacity is of order M log log n, where M is the number of antennas deployed at the transmitter. We further obtain the sum-rate loss due to the estimation error. Finally, we consider a training-based scheme for block fading MISO Gaussian broadcast channels. We find the optimum length of the training interval as well as the optimum power used for training in order to maximize the achievable sum-rate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信