{"title":"双包层低损耗红外中空芯金属光纤的理论研究","authors":"Meng Zhang, W. Yuan, Xia Yu, P. Shum","doi":"10.1109/PGC.2012.6457958","DOIUrl":null,"url":null,"abstract":"In this paper, we report on a novel hollow metallic fiber (HMF) design that offers low transmission loss for mid-infrared (mid-IR) wavelength. The fiber is so designed that it has a dielectric and metamaterial double inner-coating, which can efficiently reflect transverse-magnetic (TM) wave. As compared with a normal HMF structure, the double-cladding reduces the mode guiding loss for TM01 mode and fundamental mode by two orders of magnitude in the mid-IR region.","PeriodicalId":158783,"journal":{"name":"2012 Photonics Global Conference (PGC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical investigation on low-loss IR-transmitting hollow-core metallic fiber with double-cladding\",\"authors\":\"Meng Zhang, W. Yuan, Xia Yu, P. Shum\",\"doi\":\"10.1109/PGC.2012.6457958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report on a novel hollow metallic fiber (HMF) design that offers low transmission loss for mid-infrared (mid-IR) wavelength. The fiber is so designed that it has a dielectric and metamaterial double inner-coating, which can efficiently reflect transverse-magnetic (TM) wave. As compared with a normal HMF structure, the double-cladding reduces the mode guiding loss for TM01 mode and fundamental mode by two orders of magnitude in the mid-IR region.\",\"PeriodicalId\":158783,\"journal\":{\"name\":\"2012 Photonics Global Conference (PGC)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Photonics Global Conference (PGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PGC.2012.6457958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Photonics Global Conference (PGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PGC.2012.6457958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical investigation on low-loss IR-transmitting hollow-core metallic fiber with double-cladding
In this paper, we report on a novel hollow metallic fiber (HMF) design that offers low transmission loss for mid-infrared (mid-IR) wavelength. The fiber is so designed that it has a dielectric and metamaterial double inner-coating, which can efficiently reflect transverse-magnetic (TM) wave. As compared with a normal HMF structure, the double-cladding reduces the mode guiding loss for TM01 mode and fundamental mode by two orders of magnitude in the mid-IR region.