比较语法引导遗传规划在糖尿病患者血糖预测中的个体表征

L. Ingelse, J. Hidalgo, J. Colmenar, Nuno Lourenço, Alcides Fonseca
{"title":"比较语法引导遗传规划在糖尿病患者血糖预测中的个体表征","authors":"L. Ingelse, J. Hidalgo, J. Colmenar, Nuno Lourenço, Alcides Fonseca","doi":"10.1145/3583133.3596315","DOIUrl":null,"url":null,"abstract":"The representation of individuals in Genetic Programming (GP) has a large impact on the evolutionary process. In this work, we investigate the evolutionary process of three Grammar-Guided GP (GGGP) methods, Context-Free Grammars GP (CFG-GP), Grammatical Evolution (GE) and Structured Grammatical Evolution (SGE), in the context of the complex, real-world problem of predicting the glucose level of people with diabetes two hours ahead of time. Our analysis differs from previous analyses by (1) comparing all three methods on a complex benchmark, (2) implementing the methods in the same framework, allowing a fairer comparison, and (3) analyzing the evolutionary process outside of performance. We conclude that representation choice is more impactful with a higher maximum depth, and that CFG-GP better explores the search space for deeper trees, achieving better results. Furthermore, we find that CFG-GP relies more on feature construction, whereas GE and SGE rely more on feature selection. Finally, we altered the GGGP methods in two ways: using ε-lexicase selection, which solved the overfitting problem of CFG-GP; and with a penalization of complex trees, to create more interpretable trees. Combining ε-lexicase selection with CFG-GP performed best.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Individual Representations in Grammar-Guided Genetic Programming for Glucose Prediction in People with Diabetes\",\"authors\":\"L. Ingelse, J. Hidalgo, J. Colmenar, Nuno Lourenço, Alcides Fonseca\",\"doi\":\"10.1145/3583133.3596315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The representation of individuals in Genetic Programming (GP) has a large impact on the evolutionary process. In this work, we investigate the evolutionary process of three Grammar-Guided GP (GGGP) methods, Context-Free Grammars GP (CFG-GP), Grammatical Evolution (GE) and Structured Grammatical Evolution (SGE), in the context of the complex, real-world problem of predicting the glucose level of people with diabetes two hours ahead of time. Our analysis differs from previous analyses by (1) comparing all three methods on a complex benchmark, (2) implementing the methods in the same framework, allowing a fairer comparison, and (3) analyzing the evolutionary process outside of performance. We conclude that representation choice is more impactful with a higher maximum depth, and that CFG-GP better explores the search space for deeper trees, achieving better results. Furthermore, we find that CFG-GP relies more on feature construction, whereas GE and SGE rely more on feature selection. Finally, we altered the GGGP methods in two ways: using ε-lexicase selection, which solved the overfitting problem of CFG-GP; and with a penalization of complex trees, to create more interpretable trees. Combining ε-lexicase selection with CFG-GP performed best.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3596315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传规划(GP)中个体的表示对进化过程有很大的影响。在这项工作中,我们研究了三种语法引导GP (GGGP)方法的进化过程,即上下文无关语法GP (CFG-GP),语法进化(GE)和结构化语法进化(SGE),在预测糖尿病患者提前两小时血糖水平的复杂现实问题的背景下。我们的分析与之前的分析不同之处在于:(1)在一个复杂的基准上比较所有三种方法,(2)在同一框架中实现这些方法,允许更公平的比较,以及(3)分析性能之外的进化过程。我们的结论是,最大深度越高,表示选择越有效,并且CFG-GP更好地探索更深树的搜索空间,获得更好的结果。此外,我们发现CFG-GP更依赖于特征构建,而GE和SGE更依赖于特征选择。最后,我们从两个方面对GGGP方法进行了改进:利用ε-lexicase选择,解决了CFG-GP的过拟合问题;通过对复杂树的惩罚,创造出更多可解释的树。ε-lexicase与CFG-GP结合选择效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Individual Representations in Grammar-Guided Genetic Programming for Glucose Prediction in People with Diabetes
The representation of individuals in Genetic Programming (GP) has a large impact on the evolutionary process. In this work, we investigate the evolutionary process of three Grammar-Guided GP (GGGP) methods, Context-Free Grammars GP (CFG-GP), Grammatical Evolution (GE) and Structured Grammatical Evolution (SGE), in the context of the complex, real-world problem of predicting the glucose level of people with diabetes two hours ahead of time. Our analysis differs from previous analyses by (1) comparing all three methods on a complex benchmark, (2) implementing the methods in the same framework, allowing a fairer comparison, and (3) analyzing the evolutionary process outside of performance. We conclude that representation choice is more impactful with a higher maximum depth, and that CFG-GP better explores the search space for deeper trees, achieving better results. Furthermore, we find that CFG-GP relies more on feature construction, whereas GE and SGE rely more on feature selection. Finally, we altered the GGGP methods in two ways: using ε-lexicase selection, which solved the overfitting problem of CFG-GP; and with a penalization of complex trees, to create more interpretable trees. Combining ε-lexicase selection with CFG-GP performed best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信