用最有效位降低LLL

Goel Sarushi, I. Morel, D. Stehlé, G. Villard
{"title":"用最有效位降低LLL","authors":"Goel Sarushi, I. Morel, D. Stehlé, G. Villard","doi":"10.1145/2608628.2608645","DOIUrl":null,"url":null,"abstract":"Let B be a basis of a Euclidean lattice, and B an approximation thereof. We give a sufficient condition on the closeness between B and B so that an LLL-reducing transformation U for B remains valid for B. Further, we analyse an efficient reduction algorithm when B is itself a small deformation of an LLL-reduced basis. Applications include speeding-up reduction by keeping only the most significant bits of B, reducing a basis that is only approximately known, and efficiently batching LLL reductions for closely related inputs.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"LLL reducing with the most significant bits\",\"authors\":\"Goel Sarushi, I. Morel, D. Stehlé, G. Villard\",\"doi\":\"10.1145/2608628.2608645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let B be a basis of a Euclidean lattice, and B an approximation thereof. We give a sufficient condition on the closeness between B and B so that an LLL-reducing transformation U for B remains valid for B. Further, we analyse an efficient reduction algorithm when B is itself a small deformation of an LLL-reduced basis. Applications include speeding-up reduction by keeping only the most significant bits of B, reducing a basis that is only approximately known, and efficiently batching LLL reductions for closely related inputs.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

设B是欧几里得格的一个基,B是它的一个近似值。我们给出了B和B之间紧密性的充分条件,使得B的lll -约简变换U对B仍然有效。进一步,我们分析了当B本身是lll -约简基的一个小变形时的有效约简算法。应用程序包括通过只保留B的最有效位来加速减少,减少仅近似已知的基,以及有效地批处理密切相关输入的LLL减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LLL reducing with the most significant bits
Let B be a basis of a Euclidean lattice, and B an approximation thereof. We give a sufficient condition on the closeness between B and B so that an LLL-reducing transformation U for B remains valid for B. Further, we analyse an efficient reduction algorithm when B is itself a small deformation of an LLL-reduced basis. Applications include speeding-up reduction by keeping only the most significant bits of B, reducing a basis that is only approximately known, and efficiently batching LLL reductions for closely related inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信