学习优化多址无线网络的计算卸载性能

Lin Sun, Yangjie Cao, Rui Yin, Celimuge Wu, Yongdong Zhu, Xianfu Chen
{"title":"学习优化多址无线网络的计算卸载性能","authors":"Lin Sun, Yangjie Cao, Rui Yin, Celimuge Wu, Yongdong Zhu, Xianfu Chen","doi":"10.1145/3566099.3569005","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate computation offloading in a multi-access wireless network, which supports both cellular and WiFi connectivity between a mobile user (MU) and the edge server. The MU decides to process an arrived computation task locally at the device or offload it to the edge server for remote execution. The technical challenges of designing a computation offloading policy lie in the network uncertainties due to the MU mobility, the sporadic task arrivals, the spatially distributed WiFi connectivity and the intermittent wireless charging opportunities. Accordingly, we apply a Markov decision process framework to formulate the problem of computation offloading over the infinite discrete time horizon. The objective of the MU is to find a policy to minimize the expected long-term cost. Without the knowledge of network uncertainty statistics, this paper makes the first attempt to exploit the model-free DQNReg, which is built upon a deep Q-network by adding a weighted Q-value to the squared Bellman error, to solve an optimal computation offloading policy. Experiments validate the superior performance from our approach compared to the baselines in terms of average computation offloading cost.","PeriodicalId":272675,"journal":{"name":"Proceedings of the 1st Workshop on Digital Twin & Edge AI for Industrial IoT","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to optimize computation offloading performance in multi-access wireless networks\",\"authors\":\"Lin Sun, Yangjie Cao, Rui Yin, Celimuge Wu, Yongdong Zhu, Xianfu Chen\",\"doi\":\"10.1145/3566099.3569005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate computation offloading in a multi-access wireless network, which supports both cellular and WiFi connectivity between a mobile user (MU) and the edge server. The MU decides to process an arrived computation task locally at the device or offload it to the edge server for remote execution. The technical challenges of designing a computation offloading policy lie in the network uncertainties due to the MU mobility, the sporadic task arrivals, the spatially distributed WiFi connectivity and the intermittent wireless charging opportunities. Accordingly, we apply a Markov decision process framework to formulate the problem of computation offloading over the infinite discrete time horizon. The objective of the MU is to find a policy to minimize the expected long-term cost. Without the knowledge of network uncertainty statistics, this paper makes the first attempt to exploit the model-free DQNReg, which is built upon a deep Q-network by adding a weighted Q-value to the squared Bellman error, to solve an optimal computation offloading policy. Experiments validate the superior performance from our approach compared to the baselines in terms of average computation offloading cost.\",\"PeriodicalId\":272675,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on Digital Twin & Edge AI for Industrial IoT\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on Digital Twin & Edge AI for Industrial IoT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3566099.3569005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Digital Twin & Edge AI for Industrial IoT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3566099.3569005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了多址无线网络中的计算卸载,该网络支持移动用户(MU)和边缘服务器之间的蜂窝和WiFi连接。MU决定在设备上本地处理到达的计算任务,或者将其卸载到边缘服务器进行远程执行。设计计算卸载策略的技术挑战在于MU的移动性、零星的任务到达、空间分布的WiFi连接和间歇性的无线充电机会所带来的网络不确定性。因此,我们应用马尔可夫决策过程框架来表述无限离散时间范围上的计算卸载问题。共同目标的目标是找到一项政策,使预期的长期成本最小化。在不了解网络不确定性统计知识的情况下,本文首次尝试利用无模型DQNReg,该DQNReg通过在Bellman误差的平方上添加加权q值来构建深度q网络,以解决最优的计算卸载策略。实验验证了我们的方法在平均计算卸载成本方面与基线相比的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to optimize computation offloading performance in multi-access wireless networks
In this paper, we investigate computation offloading in a multi-access wireless network, which supports both cellular and WiFi connectivity between a mobile user (MU) and the edge server. The MU decides to process an arrived computation task locally at the device or offload it to the edge server for remote execution. The technical challenges of designing a computation offloading policy lie in the network uncertainties due to the MU mobility, the sporadic task arrivals, the spatially distributed WiFi connectivity and the intermittent wireless charging opportunities. Accordingly, we apply a Markov decision process framework to formulate the problem of computation offloading over the infinite discrete time horizon. The objective of the MU is to find a policy to minimize the expected long-term cost. Without the knowledge of network uncertainty statistics, this paper makes the first attempt to exploit the model-free DQNReg, which is built upon a deep Q-network by adding a weighted Q-value to the squared Bellman error, to solve an optimal computation offloading policy. Experiments validate the superior performance from our approach compared to the baselines in terms of average computation offloading cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信