{"title":"基于机器学习的微电网攻击检测的实际挑战","authors":"Daniel T. Ramotsoela, G. Hancke, A. Abu-Mahfouz","doi":"10.3390/jsan12010007","DOIUrl":null,"url":null,"abstract":"The move towards renewable energy and technological advancements in the generation, distribution and transmission of electricity have increased the popularity of microgrids. The popularity of these decentralised applications has coincided with advancements in the field of telecommunications allowing for the efficient implementation of these applications. This convenience has, however, also coincided with an increase in the attack surface of these systems, resulting in an increase in the number of cyber-attacks against them. Preventative network security mechanisms alone are not enough to protect these systems as a critical design feature is system resilience, so intrusion detection and prevention system are required. The practical consideration for the implementation of the proposed schemes in practice is, however, neglected in the literature. This paper attempts to address this by generalising these considerations and using the lessons learned from water distribution systems as a case study. It was found that the considerations are similar irrespective of the application environment even though context-specific information is a requirement for effective deployment.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Practical Challenges of Attack Detection in Microgrids Using Machine Learning\",\"authors\":\"Daniel T. Ramotsoela, G. Hancke, A. Abu-Mahfouz\",\"doi\":\"10.3390/jsan12010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The move towards renewable energy and technological advancements in the generation, distribution and transmission of electricity have increased the popularity of microgrids. The popularity of these decentralised applications has coincided with advancements in the field of telecommunications allowing for the efficient implementation of these applications. This convenience has, however, also coincided with an increase in the attack surface of these systems, resulting in an increase in the number of cyber-attacks against them. Preventative network security mechanisms alone are not enough to protect these systems as a critical design feature is system resilience, so intrusion detection and prevention system are required. The practical consideration for the implementation of the proposed schemes in practice is, however, neglected in the literature. This paper attempts to address this by generalising these considerations and using the lessons learned from water distribution systems as a case study. It was found that the considerations are similar irrespective of the application environment even though context-specific information is a requirement for effective deployment.\",\"PeriodicalId\":288992,\"journal\":{\"name\":\"J. Sens. Actuator Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Sens. Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan12010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sens. Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical Challenges of Attack Detection in Microgrids Using Machine Learning
The move towards renewable energy and technological advancements in the generation, distribution and transmission of electricity have increased the popularity of microgrids. The popularity of these decentralised applications has coincided with advancements in the field of telecommunications allowing for the efficient implementation of these applications. This convenience has, however, also coincided with an increase in the attack surface of these systems, resulting in an increase in the number of cyber-attacks against them. Preventative network security mechanisms alone are not enough to protect these systems as a critical design feature is system resilience, so intrusion detection and prevention system are required. The practical consideration for the implementation of the proposed schemes in practice is, however, neglected in the literature. This paper attempts to address this by generalising these considerations and using the lessons learned from water distribution systems as a case study. It was found that the considerations are similar irrespective of the application environment even though context-specific information is a requirement for effective deployment.