一种基于分割的时间序列数据相似性度量方法

Kakuli Mishra, Srinka Basu, U. Maulik
{"title":"一种基于分割的时间序列数据相似性度量方法","authors":"Kakuli Mishra, Srinka Basu, U. Maulik","doi":"10.1145/3371158.3371221","DOIUrl":null,"url":null,"abstract":"Focusing on the objectives of Demand Side Management (DSM), we propose a novel time series distance metric that better capture the information related to similar peaks/off-peaks. The proposed metric uses autocorrelation based segmentation and similar segment identification for computation of overall distance. Experiment shows the proposed distance advances the state-of-the-art.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A segmentation based similarity measure for time series data\",\"authors\":\"Kakuli Mishra, Srinka Basu, U. Maulik\",\"doi\":\"10.1145/3371158.3371221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on the objectives of Demand Side Management (DSM), we propose a novel time series distance metric that better capture the information related to similar peaks/off-peaks. The proposed metric uses autocorrelation based segmentation and similar segment identification for computation of overall distance. Experiment shows the proposed distance advances the state-of-the-art.\",\"PeriodicalId\":360747,\"journal\":{\"name\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371158.3371221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对需求侧管理(DSM)的目标,我们提出了一种新的时间序列距离度量,可以更好地捕获与相似峰值/非峰值相关的信息。该度量使用基于自相关的分割和相似段识别来计算总距离。实验表明,所提出的距离是最先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A segmentation based similarity measure for time series data
Focusing on the objectives of Demand Side Management (DSM), we propose a novel time series distance metric that better capture the information related to similar peaks/off-peaks. The proposed metric uses autocorrelation based segmentation and similar segment identification for computation of overall distance. Experiment shows the proposed distance advances the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信