深度特征引导图像重定位

Jinan Wu, Rong Xie, Li Song, Bo Liu
{"title":"深度特征引导图像重定位","authors":"Jinan Wu, Rong Xie, Li Song, Bo Liu","doi":"10.1109/VCIP47243.2019.8966008","DOIUrl":null,"url":null,"abstract":"Image retargeting is the technique to display images via devices with various aspect ratios and sizes. Traditional content-aware retargeting methods rely on low-level features to predict pixel-wise importance and can hardly preserve both the structure lines and salient regions of the source image. To address this problem, we propose a novel adaptive image warping approach which integrates with deep convolutional neural network. In the proposed method, a visual importance map and a foreground mask map are generated by a pre-trained network. The two maps and other constraints guide the warping process to yield retargeted results with less distortions. Extensive experiments in terms of visual quality and a user study are carried out on the widely used RetargetMe dataset. Experimental results show that our method outperforms current state-of-art image retargeting methods.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Feature Guided Image Retargeting\",\"authors\":\"Jinan Wu, Rong Xie, Li Song, Bo Liu\",\"doi\":\"10.1109/VCIP47243.2019.8966008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image retargeting is the technique to display images via devices with various aspect ratios and sizes. Traditional content-aware retargeting methods rely on low-level features to predict pixel-wise importance and can hardly preserve both the structure lines and salient regions of the source image. To address this problem, we propose a novel adaptive image warping approach which integrates with deep convolutional neural network. In the proposed method, a visual importance map and a foreground mask map are generated by a pre-trained network. The two maps and other constraints guide the warping process to yield retargeted results with less distortions. Extensive experiments in terms of visual quality and a user study are carried out on the widely used RetargetMe dataset. Experimental results show that our method outperforms current state-of-art image retargeting methods.\",\"PeriodicalId\":388109,\"journal\":{\"name\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP47243.2019.8966008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8966008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像重定向是通过各种宽高比和尺寸的设备显示图像的技术。传统的内容感知重定向方法依赖于低级特征来预测像素重要性,很难同时保留源图像的结构线和显著区域。为了解决这个问题,我们提出了一种结合深度卷积神经网络的自适应图像扭曲方法。在该方法中,通过预训练的网络生成视觉重要性图和前景掩码图。两个地图和其他约束指导翘曲过程以产生更少扭曲的重定向结果。在广泛使用的RetargetMe数据集上进行了大量的视觉质量实验和用户研究。实验结果表明,该方法优于当前最先进的图像重定向方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Feature Guided Image Retargeting
Image retargeting is the technique to display images via devices with various aspect ratios and sizes. Traditional content-aware retargeting methods rely on low-level features to predict pixel-wise importance and can hardly preserve both the structure lines and salient regions of the source image. To address this problem, we propose a novel adaptive image warping approach which integrates with deep convolutional neural network. In the proposed method, a visual importance map and a foreground mask map are generated by a pre-trained network. The two maps and other constraints guide the warping process to yield retargeted results with less distortions. Extensive experiments in terms of visual quality and a user study are carried out on the widely used RetargetMe dataset. Experimental results show that our method outperforms current state-of-art image retargeting methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信