带属性广义树的结构相似性

Mahsa Kiani, V. Bhavsar, H. Boley
{"title":"带属性广义树的结构相似性","authors":"Mahsa Kiani, V. Bhavsar, H. Boley","doi":"10.1109/ICSC.2014.33","DOIUrl":null,"url":null,"abstract":"Structure-similarity method for attributed generalized trees is proposed. (Meta)data is expressed as a generalized tree, in which inner-vertex labels (as types) and edge labels (as attributes) embody semantic information, while edge weights express assessments regarding the (percentage-)relative importance of the attributes, a kind of pragmatic information added by domain experts. The generalized trees are uniformly represented and interchanged using a weighted extension of Object Oriented RuleML. The recursive similarity algorithm performs a top-down traversal of structures and computes the global similarity of two structures bottom-up considering vertex labels, edge labels, and edge-weight similarities. In order to compare generalized trees having different sizes, the effect of a missing sub-structure on the overall similarity is computed using a simplicity measure. The proposed similarity approach is applied in the retrieval of Electronic Medical Records (EMRs).","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structure Similarity of Attributed Generalized Trees\",\"authors\":\"Mahsa Kiani, V. Bhavsar, H. Boley\",\"doi\":\"10.1109/ICSC.2014.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structure-similarity method for attributed generalized trees is proposed. (Meta)data is expressed as a generalized tree, in which inner-vertex labels (as types) and edge labels (as attributes) embody semantic information, while edge weights express assessments regarding the (percentage-)relative importance of the attributes, a kind of pragmatic information added by domain experts. The generalized trees are uniformly represented and interchanged using a weighted extension of Object Oriented RuleML. The recursive similarity algorithm performs a top-down traversal of structures and computes the global similarity of two structures bottom-up considering vertex labels, edge labels, and edge-weight similarities. In order to compare generalized trees having different sizes, the effect of a missing sub-structure on the overall similarity is computed using a simplicity measure. The proposed similarity approach is applied in the retrieval of Electronic Medical Records (EMRs).\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了带属性广义树的结构相似度方法。(元)数据表示为广义树,其中内顶点标签(作为类型)和边缘标签(作为属性)体现语义信息,而边缘权重表示对属性(百分比-)相对重要性的评估,这是一种由领域专家添加的实用信息。使用面向对象规则ml的加权扩展统一表示和交换广义树。递归相似度算法对结构进行自顶向下的遍历,并考虑顶点标签、边缘标签和边权相似度,自底向上计算两个结构的全局相似度。为了比较具有不同大小的广义树,使用简单度量方法计算缺失子结构对总体相似度的影响。将提出的相似度方法应用于电子病历的检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Similarity of Attributed Generalized Trees
Structure-similarity method for attributed generalized trees is proposed. (Meta)data is expressed as a generalized tree, in which inner-vertex labels (as types) and edge labels (as attributes) embody semantic information, while edge weights express assessments regarding the (percentage-)relative importance of the attributes, a kind of pragmatic information added by domain experts. The generalized trees are uniformly represented and interchanged using a weighted extension of Object Oriented RuleML. The recursive similarity algorithm performs a top-down traversal of structures and computes the global similarity of two structures bottom-up considering vertex labels, edge labels, and edge-weight similarities. In order to compare generalized trees having different sizes, the effect of a missing sub-structure on the overall similarity is computed using a simplicity measure. The proposed similarity approach is applied in the retrieval of Electronic Medical Records (EMRs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信