线性正则变换框架下的波包变换

A. Prasad, Z. A. Ansari
{"title":"线性正则变换框架下的波包变换","authors":"A. Prasad, Z. A. Ansari","doi":"10.1142/s0219691321500521","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of linear canonical wave packet transform (LCWPT) based on the idea of linear canonical transform (LCT) and wave packet transform (WPT). Parseval’s identity and some properties of LCWPT are discussed. The inversion formula of LCWPT is formulated. Moreover, the composition of LCWPTs is defined and some properties are studied related to it. The LCWPTs of Mexican hat wavelet function are obtained.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wave packet transform in the framework of linear canonical transform\",\"authors\":\"A. Prasad, Z. A. Ansari\",\"doi\":\"10.1142/s0219691321500521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of linear canonical wave packet transform (LCWPT) based on the idea of linear canonical transform (LCT) and wave packet transform (WPT). Parseval’s identity and some properties of LCWPT are discussed. The inversion formula of LCWPT is formulated. Moreover, the composition of LCWPTs is defined and some properties are studied related to it. The LCWPTs of Mexican hat wavelet function are obtained.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在线性正则变换(LCT)和波包变换(WPT)思想的基础上,引入了线性正则波包变换(LCWPT)的概念。讨论了LCWPT的Parseval恒等式和一些性质。给出了LCWPT的反演公式。此外,定义了lcwpt的组成,并研究了与之相关的一些性质。得到了墨西哥帽小波函数的LCWPTs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The wave packet transform in the framework of linear canonical transform
In this paper, we introduce the concept of linear canonical wave packet transform (LCWPT) based on the idea of linear canonical transform (LCT) and wave packet transform (WPT). Parseval’s identity and some properties of LCWPT are discussed. The inversion formula of LCWPT is formulated. Moreover, the composition of LCWPTs is defined and some properties are studied related to it. The LCWPTs of Mexican hat wavelet function are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信