基于改进预处理和分类技术的PCA和LDA的性别识别

Reza Ferizal, S. Wibirama, N. A. Setiawan
{"title":"基于改进预处理和分类技术的PCA和LDA的性别识别","authors":"Reza Ferizal, S. Wibirama, N. A. Setiawan","doi":"10.1109/INAES.2017.8068547","DOIUrl":null,"url":null,"abstract":"This paper explains the gender recognition system through a human facial image by using the basic method of Principal Component Analysis (PCA) combined with Linear Discriminant Analysis (LDA). PCA+LDA method performance can be improved by improvising the preprocessing techniques such as resizing the image, equalizing the histogram, and removing the variation of the image background by adding oval masking face. Furthermore, in classification process, using 9 nearest neighbors gives the better recognition accuracy rather than using only 1 nearest neighbor. The highest accuracy results obtained with the proposed method is superior to get 89.70% when compared to the PCA + LDA method without adding masking face, which only reached 84.16%.","PeriodicalId":382919,"journal":{"name":"2017 7th International Annual Engineering Seminar (InAES)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gender recognition using PCA and LDA with improve preprocessing and classification technique\",\"authors\":\"Reza Ferizal, S. Wibirama, N. A. Setiawan\",\"doi\":\"10.1109/INAES.2017.8068547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explains the gender recognition system through a human facial image by using the basic method of Principal Component Analysis (PCA) combined with Linear Discriminant Analysis (LDA). PCA+LDA method performance can be improved by improvising the preprocessing techniques such as resizing the image, equalizing the histogram, and removing the variation of the image background by adding oval masking face. Furthermore, in classification process, using 9 nearest neighbors gives the better recognition accuracy rather than using only 1 nearest neighbor. The highest accuracy results obtained with the proposed method is superior to get 89.70% when compared to the PCA + LDA method without adding masking face, which only reached 84.16%.\",\"PeriodicalId\":382919,\"journal\":{\"name\":\"2017 7th International Annual Engineering Seminar (InAES)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Annual Engineering Seminar (InAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INAES.2017.8068547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Annual Engineering Seminar (InAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INAES.2017.8068547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文利用主成分分析(PCA)与线性判别分析(LDA)相结合的基本方法,对人脸图像的性别识别系统进行了阐述。PCA+LDA方法可以通过调整图像大小、均衡化直方图、添加椭圆掩蔽面消除图像背景变化等预处理技术来提高算法的性能。此外,在分类过程中,使用9个最近邻比只使用1个最近邻具有更好的识别精度。与不添加掩蔽面的PCA + LDA方法相比,该方法的最高准确率为89.70%,仅为84.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender recognition using PCA and LDA with improve preprocessing and classification technique
This paper explains the gender recognition system through a human facial image by using the basic method of Principal Component Analysis (PCA) combined with Linear Discriminant Analysis (LDA). PCA+LDA method performance can be improved by improvising the preprocessing techniques such as resizing the image, equalizing the histogram, and removing the variation of the image background by adding oval masking face. Furthermore, in classification process, using 9 nearest neighbors gives the better recognition accuracy rather than using only 1 nearest neighbor. The highest accuracy results obtained with the proposed method is superior to get 89.70% when compared to the PCA + LDA method without adding masking face, which only reached 84.16%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信