机器学习辅助QoT估计在光网络中的推广

Hanyu Gao, Liang Zhang, Bin Zhang, Xiaoliang Chen, Zhaohui Li
{"title":"机器学习辅助QoT估计在光网络中的推广","authors":"Hanyu Gao, Liang Zhang, Bin Zhang, Xiaoliang Chen, Zhaohui Li","doi":"10.1109/WOCC58016.2023.10139536","DOIUrl":null,"url":null,"abstract":"This paper presents a composable machine learning method for generalizing the quality-of-transmission (QoT) metric estimation in optical networks. The composable machine learning approach characterizes this metric for lightpaths of arbitrary lengths by compositions of launch, propagation and readout modules. Results verify the feasibility of the design and show its successful application in facilitating autonomous lightpath provisioning.","PeriodicalId":226792,"journal":{"name":"2023 32nd Wireless and Optical Communications Conference (WOCC)","volume":"82 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Generalization of Machine-Learning-aided QoT Estimation in Optical Networks\",\"authors\":\"Hanyu Gao, Liang Zhang, Bin Zhang, Xiaoliang Chen, Zhaohui Li\",\"doi\":\"10.1109/WOCC58016.2023.10139536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a composable machine learning method for generalizing the quality-of-transmission (QoT) metric estimation in optical networks. The composable machine learning approach characterizes this metric for lightpaths of arbitrary lengths by compositions of launch, propagation and readout modules. Results verify the feasibility of the design and show its successful application in facilitating autonomous lightpath provisioning.\",\"PeriodicalId\":226792,\"journal\":{\"name\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"82 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC58016.2023.10139536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 32nd Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC58016.2023.10139536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种可组合的机器学习方法用于光网络中传输质量度量估计的泛化。可组合的机器学习方法通过发射、传播和读出模块的组合来表征任意长度的光路。结果验证了该设计的可行性,并显示了其在促进自主光路配置方面的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Generalization of Machine-Learning-aided QoT Estimation in Optical Networks
This paper presents a composable machine learning method for generalizing the quality-of-transmission (QoT) metric estimation in optical networks. The composable machine learning approach characterizes this metric for lightpaths of arbitrary lengths by compositions of launch, propagation and readout modules. Results verify the feasibility of the design and show its successful application in facilitating autonomous lightpath provisioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信