截线和矩阵划分

J. Edmonds, D. R. Fulkerson
{"title":"截线和矩阵划分","authors":"J. Edmonds, D. R. Fulkerson","doi":"10.6028/JRES.069B.016","DOIUrl":null,"url":null,"abstract":"Abstract : A matroid M = (E, F) is a finite set E of elements and a family F of subsets of E, called independent sets, such that (1) every subset of an independent set is independent, and (2) for every set A belonging to E, all maximal independent subsets of A have the same cardinality, called the rank r(A) of A. The concept of 'matroid' thus generalizes that of 'matrix' or, in particular, that of 'graph.' This paper treats a variety of partition problems involving independent sets of matroids.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1965-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"251","resultStr":"{\"title\":\"Transversals and Matroid Partition\",\"authors\":\"J. Edmonds, D. R. Fulkerson\",\"doi\":\"10.6028/JRES.069B.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : A matroid M = (E, F) is a finite set E of elements and a family F of subsets of E, called independent sets, such that (1) every subset of an independent set is independent, and (2) for every set A belonging to E, all maximal independent subsets of A have the same cardinality, called the rank r(A) of A. The concept of 'matroid' thus generalizes that of 'matrix' or, in particular, that of 'graph.' This paper treats a variety of partition problems involving independent sets of matroids.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"251\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.069B.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.069B.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 251

摘要

摘要:矩阵M = (E, F)是由元素组成的有限集合E和由称为独立集合的E的子集组成的族F,满足(1)独立集合的每个子集都是独立的,(2)对于属于E的每个集合A, A的所有极大独立子集具有相同的基数,称为A的秩r(A)。因此,“矩阵”的概念推广了“矩阵”的概念,特别是“图”的概念。本文讨论了涉及独立拟阵集的各种划分问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transversals and Matroid Partition
Abstract : A matroid M = (E, F) is a finite set E of elements and a family F of subsets of E, called independent sets, such that (1) every subset of an independent set is independent, and (2) for every set A belonging to E, all maximal independent subsets of A have the same cardinality, called the rank r(A) of A. The concept of 'matroid' thus generalizes that of 'matrix' or, in particular, that of 'graph.' This paper treats a variety of partition problems involving independent sets of matroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信