Ru-Ni/Al2O3催化剂存在下塑料的增值生成合成气

Aida Younis, C. Gennequin, E. A. Aad, Jane Estephane, S. Aouad
{"title":"Ru-Ni/Al2O3催化剂存在下塑料的增值生成合成气","authors":"Aida Younis, C. Gennequin, E. A. Aad, Jane Estephane, S. Aouad","doi":"10.1109/IREC52758.2021.9624814","DOIUrl":null,"url":null,"abstract":"The catalytic dry reforming of polypropylene was performed in a two-stage fixed bed reactor. The plastic pyrolysis took place in the first stage, and the catalytic-dry reforming (presence of catalyst and carbon dioxide) of the produced pyrolyzed gases took place in the second stage reactor. The catalysts used (yRuxNiAl2O3) were synthesized via wet impregnation, calcined, and then reduced at 800°C, prior to the pyrolysis-reforming reaction. The results showed that the increase in nickel loading increased the syngas yield. The addition of small amounts of ruthenium as a metal promoter significantly improved the conversion of polypropylene into syngas. Thus, the catalytic dry reforming of plastics is proven to be a promising solution to tackle the non-recycled plastic waste problem while valorizing the greenhouse gas carbon dioxide and producing synthesis gas (H2 + CO).","PeriodicalId":266552,"journal":{"name":"2021 12th International Renewable Energy Congress (IREC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Valorization of plastics in the presence of Ru-Ni/Al2O3 catalysts to produce syngas\",\"authors\":\"Aida Younis, C. Gennequin, E. A. Aad, Jane Estephane, S. Aouad\",\"doi\":\"10.1109/IREC52758.2021.9624814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalytic dry reforming of polypropylene was performed in a two-stage fixed bed reactor. The plastic pyrolysis took place in the first stage, and the catalytic-dry reforming (presence of catalyst and carbon dioxide) of the produced pyrolyzed gases took place in the second stage reactor. The catalysts used (yRuxNiAl2O3) were synthesized via wet impregnation, calcined, and then reduced at 800°C, prior to the pyrolysis-reforming reaction. The results showed that the increase in nickel loading increased the syngas yield. The addition of small amounts of ruthenium as a metal promoter significantly improved the conversion of polypropylene into syngas. Thus, the catalytic dry reforming of plastics is proven to be a promising solution to tackle the non-recycled plastic waste problem while valorizing the greenhouse gas carbon dioxide and producing synthesis gas (H2 + CO).\",\"PeriodicalId\":266552,\"journal\":{\"name\":\"2021 12th International Renewable Energy Congress (IREC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Renewable Energy Congress (IREC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IREC52758.2021.9624814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Renewable Energy Congress (IREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IREC52758.2021.9624814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在两段固定床反应器中进行了聚丙烯的催化干重整。塑料热解在一级反应器中进行,产生的热解气体在二级反应器中进行催化-干重整(有催化剂和二氧化碳存在)。所用催化剂(yRuxNiAl2O3)经湿浸渍、煅烧、800℃还原后进行热解重整反应。结果表明,镍负荷量的增加提高了合成气产率。添加少量的钌作为金属促进剂,显著提高了聚丙烯制合成气的转化率。因此,塑料的催化干重整被证明是解决不可回收塑料废物问题的一个有前途的解决方案,同时使温室气体二氧化碳增值并产生合成气(H2 + CO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Valorization of plastics in the presence of Ru-Ni/Al2O3 catalysts to produce syngas
The catalytic dry reforming of polypropylene was performed in a two-stage fixed bed reactor. The plastic pyrolysis took place in the first stage, and the catalytic-dry reforming (presence of catalyst and carbon dioxide) of the produced pyrolyzed gases took place in the second stage reactor. The catalysts used (yRuxNiAl2O3) were synthesized via wet impregnation, calcined, and then reduced at 800°C, prior to the pyrolysis-reforming reaction. The results showed that the increase in nickel loading increased the syngas yield. The addition of small amounts of ruthenium as a metal promoter significantly improved the conversion of polypropylene into syngas. Thus, the catalytic dry reforming of plastics is proven to be a promising solution to tackle the non-recycled plastic waste problem while valorizing the greenhouse gas carbon dioxide and producing synthesis gas (H2 + CO).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信