由ICP-CVD生长的独立碳纳米管阵列的场发射

S. Tseng, S. Tsai, B. Yao, Y.K. Lee, K. Leou, C. Tsai
{"title":"由ICP-CVD生长的独立碳纳米管阵列的场发射","authors":"S. Tseng, S. Tsai, B. Yao, Y.K. Lee, K. Leou, C. Tsai","doi":"10.1109/IVNC.2004.1354911","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) have been considered as a prime candidate material of cold cathode emitter for field emission (FE) application. No matter whether the cathode assembly is fabricated by screen printing or in-situ chemical vapor deposition (CVD), the strict requirement of high emission uniformity on a large area display panel still remains a great challenge. There have been a large amount of publications demonstrating the ability of growing large area patterned well-aligned multi-walled carbon nanotubes with uniform diameter and height by thermal CVD. The field emission performance however was hampered due to high carbon nanotube density (> 10/sup 8/ cm/sup -2/) and low emission density (/spl sim/10/sup 4/ cm/sup -2/), which is not attributed solely to the electrical field screening effect. In this report, we used electron beam lithography (EBL) followed by metal deposition/lift-off to define the position and size of nickel catalyst and grew CNTs using inductively-coupled plasma (ICP) CVD. The EBL has been proven to be a straight forward method to define an array of catalyst metal dots with designated size and inter-distance. The ICP-CVD has been shown to grow free-standing vertically-aligned CNTs with uniform diameter and height. And then a gripper-type nano-object manipulation assembly inside a scanning electron microscope (SEM) was utilized to measure the field emission from individual carbon nanotube.","PeriodicalId":137345,"journal":{"name":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field emission-from arrays of free-standing carbon nanotubes grown by ICP-CVD\",\"authors\":\"S. Tseng, S. Tsai, B. Yao, Y.K. Lee, K. Leou, C. Tsai\",\"doi\":\"10.1109/IVNC.2004.1354911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotubes (CNTs) have been considered as a prime candidate material of cold cathode emitter for field emission (FE) application. No matter whether the cathode assembly is fabricated by screen printing or in-situ chemical vapor deposition (CVD), the strict requirement of high emission uniformity on a large area display panel still remains a great challenge. There have been a large amount of publications demonstrating the ability of growing large area patterned well-aligned multi-walled carbon nanotubes with uniform diameter and height by thermal CVD. The field emission performance however was hampered due to high carbon nanotube density (> 10/sup 8/ cm/sup -2/) and low emission density (/spl sim/10/sup 4/ cm/sup -2/), which is not attributed solely to the electrical field screening effect. In this report, we used electron beam lithography (EBL) followed by metal deposition/lift-off to define the position and size of nickel catalyst and grew CNTs using inductively-coupled plasma (ICP) CVD. The EBL has been proven to be a straight forward method to define an array of catalyst metal dots with designated size and inter-distance. The ICP-CVD has been shown to grow free-standing vertically-aligned CNTs with uniform diameter and height. And then a gripper-type nano-object manipulation assembly inside a scanning electron microscope (SEM) was utilized to measure the field emission from individual carbon nanotube.\",\"PeriodicalId\":137345,\"journal\":{\"name\":\"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVNC.2004.1354911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC.2004.1354911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米管(CNTs)已被认为是场发射(FE)冷阴极发射材料的主要候选材料。无论阴极组件是采用丝网印刷还是原位化学气相沉积(CVD)制造,对大面积显示面板的高发射均匀性的严格要求仍然是一个巨大的挑战。已经有大量的出版物证明了热气相沉积法可以生长具有均匀直径和高度的大面积图案排列良好的多壁碳纳米管。然而,高碳纳米管密度(> 10/sup 8/ cm/sup -2/)和低碳纳米管密度(/spl sim/10/sup 4/ cm/sup -2/)阻碍了场发射性能,而这不仅仅是电场屏蔽效应造成的。在本报告中,我们使用电子束光刻(EBL),然后金属沉积/升空来确定镍催化剂的位置和尺寸,并使用电感耦合等离子体(ICP) CVD生长碳纳米管。EBL已被证明是一种直接的方法来定义具有指定尺寸和间距的催化剂金属点阵列。ICP-CVD已被证明可以生长出具有均匀直径和高度的独立垂直排列的CNTs。然后利用扫描电子显微镜(SEM)内的夹持式纳米物体操纵组件测量单个碳纳米管的场发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field emission-from arrays of free-standing carbon nanotubes grown by ICP-CVD
Carbon nanotubes (CNTs) have been considered as a prime candidate material of cold cathode emitter for field emission (FE) application. No matter whether the cathode assembly is fabricated by screen printing or in-situ chemical vapor deposition (CVD), the strict requirement of high emission uniformity on a large area display panel still remains a great challenge. There have been a large amount of publications demonstrating the ability of growing large area patterned well-aligned multi-walled carbon nanotubes with uniform diameter and height by thermal CVD. The field emission performance however was hampered due to high carbon nanotube density (> 10/sup 8/ cm/sup -2/) and low emission density (/spl sim/10/sup 4/ cm/sup -2/), which is not attributed solely to the electrical field screening effect. In this report, we used electron beam lithography (EBL) followed by metal deposition/lift-off to define the position and size of nickel catalyst and grew CNTs using inductively-coupled plasma (ICP) CVD. The EBL has been proven to be a straight forward method to define an array of catalyst metal dots with designated size and inter-distance. The ICP-CVD has been shown to grow free-standing vertically-aligned CNTs with uniform diameter and height. And then a gripper-type nano-object manipulation assembly inside a scanning electron microscope (SEM) was utilized to measure the field emission from individual carbon nanotube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信