平面上有节点和节点的圆锥排列

A. Dimca, Marek Janasz, Piotr Pokora
{"title":"平面上有节点和节点的圆锥排列","authors":"A. Dimca, Marek Janasz, Piotr Pokora","doi":"10.2140/iig.2022.19.47","DOIUrl":null,"url":null,"abstract":"In the present paper, we study arrangements of smooth plane conics having only nodes and tacnodes as the singularities. We provide an interesting estimation on the number of nodes and tacnodes that depends only on a linear function of the number of conics. Based on that result, we obtain a new upper bound on the number of tacnodes which turns out to be better than Miyaoka’s bound for a large enough number of conics. We also study the freeness and nearly freeness of such arrangements providing a detailed description.","PeriodicalId":127937,"journal":{"name":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On plane conic arrangements with nodes and tacnodes\",\"authors\":\"A. Dimca, Marek Janasz, Piotr Pokora\",\"doi\":\"10.2140/iig.2022.19.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study arrangements of smooth plane conics having only nodes and tacnodes as the singularities. We provide an interesting estimation on the number of nodes and tacnodes that depends only on a linear function of the number of conics. Based on that result, we obtain a new upper bound on the number of tacnodes which turns out to be better than Miyaoka’s bound for a large enough number of conics. We also study the freeness and nearly freeness of such arrangements providing a detailed description.\",\"PeriodicalId\":127937,\"journal\":{\"name\":\"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2022.19.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2022.19.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了以结点和结点为奇点的光滑平面二次曲线的排列。我们提供了一个有趣的关于节点和节点数量的估计,它只依赖于圆锥数的线性函数。在此基础上,我们得到了一个新的结点数上界,该上界在足够大的圆锥数下优于Miyaoka上界。我们还研究了这种排列的自由性和近似自由性,并给出了详细的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On plane conic arrangements with nodes and tacnodes
In the present paper, we study arrangements of smooth plane conics having only nodes and tacnodes as the singularities. We provide an interesting estimation on the number of nodes and tacnodes that depends only on a linear function of the number of conics. Based on that result, we obtain a new upper bound on the number of tacnodes which turns out to be better than Miyaoka’s bound for a large enough number of conics. We also study the freeness and nearly freeness of such arrangements providing a detailed description.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信