使用监督聚类的多标签分类系统

Niloofar Rastin, M. Z. Jahromi, M. Taheri
{"title":"使用监督聚类的多标签分类系统","authors":"Niloofar Rastin, M. Z. Jahromi, M. Taheri","doi":"10.1109/AISP.2017.8324090","DOIUrl":null,"url":null,"abstract":"Multi-label classification problem involves finding a model that maps a set of input features to more than one output labels. It is well known that, exploiting label correlations is important for multi-label learning. In this paper, a supervised clustering-based multi-label classification method is proposed that uses supervised clustering for considering label correlations. The proposed approach enhanced the performance of multi-label classification systems in comparison with the state of the art. Experimental results on a number of image, music and text datasets validate the effectiveness of the proposed approach.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-label classification systems by the use of supervised clustering\",\"authors\":\"Niloofar Rastin, M. Z. Jahromi, M. Taheri\",\"doi\":\"10.1109/AISP.2017.8324090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label classification problem involves finding a model that maps a set of input features to more than one output labels. It is well known that, exploiting label correlations is important for multi-label learning. In this paper, a supervised clustering-based multi-label classification method is proposed that uses supervised clustering for considering label correlations. The proposed approach enhanced the performance of multi-label classification systems in comparison with the state of the art. Experimental results on a number of image, music and text datasets validate the effectiveness of the proposed approach.\",\"PeriodicalId\":386952,\"journal\":{\"name\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2017.8324090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多标签分类问题涉及找到一个模型,该模型将一组输入特征映射到多个输出标签。众所周知,利用标签相关性对于多标签学习非常重要。本文提出了一种基于监督聚类的多标签分类方法,该方法利用监督聚类来考虑标签相关性。与现有的多标签分类系统相比,该方法提高了多标签分类系统的性能。在大量图像、音乐和文本数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-label classification systems by the use of supervised clustering
Multi-label classification problem involves finding a model that maps a set of input features to more than one output labels. It is well known that, exploiting label correlations is important for multi-label learning. In this paper, a supervised clustering-based multi-label classification method is proposed that uses supervised clustering for considering label correlations. The proposed approach enhanced the performance of multi-label classification systems in comparison with the state of the art. Experimental results on a number of image, music and text datasets validate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信