改进对象建议的贝叶斯优化

A. Rhodes, Jordan M. Witte, B. Jedynak, Melanie Mitchell
{"title":"改进对象建议的贝叶斯优化","authors":"A. Rhodes, Jordan M. Witte, B. Jedynak, Melanie Mitchell","doi":"10.1109/IPTA.2017.8310084","DOIUrl":null,"url":null,"abstract":"We develop a general-purpose algorithm using a Bayesian optimization framework for the efficient refinement of object proposals. While recent research has achieved substantial progress for object localization and related objectives in computer vision, current state-of-the-art object localization procedures are nevertheless encumbered by inefficiency and inaccuracy. We present a novel, computationally efficient method for refining inaccurate bounding-box proposals for a target object using Bayesian optimization. Offline, image features from a convolutional neural network are used to train a model to predict an object proposal's offset distance from a target object. Online, this model is used in a Bayesian active search to improve inaccurate object proposals. In experiments, we compare our approach to a state-of-the-art bounding-box regression method for localization refinement of pedestrian object proposals.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian optimization for refining object proposals\",\"authors\":\"A. Rhodes, Jordan M. Witte, B. Jedynak, Melanie Mitchell\",\"doi\":\"10.1109/IPTA.2017.8310084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general-purpose algorithm using a Bayesian optimization framework for the efficient refinement of object proposals. While recent research has achieved substantial progress for object localization and related objectives in computer vision, current state-of-the-art object localization procedures are nevertheless encumbered by inefficiency and inaccuracy. We present a novel, computationally efficient method for refining inaccurate bounding-box proposals for a target object using Bayesian optimization. Offline, image features from a convolutional neural network are used to train a model to predict an object proposal's offset distance from a target object. Online, this model is used in a Bayesian active search to improve inaccurate object proposals. In experiments, we compare our approach to a state-of-the-art bounding-box regression method for localization refinement of pedestrian object proposals.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一种通用算法,使用贝叶斯优化框架来有效地改进对象建议。虽然最近的研究在计算机视觉中的目标定位和相关目标方面取得了实质性进展,但目前最先进的目标定位程序仍然存在效率低下和不准确的问题。我们提出了一种新颖的,计算效率高的方法,用于使用贝叶斯优化来改进目标对象的不准确边界盒建议。在离线状态下,使用卷积神经网络的图像特征来训练模型来预测物体提案与目标物体的偏移距离。在线上,该模型用于贝叶斯主动搜索,以改善不准确的目标建议。在实验中,我们将我们的方法与最先进的边界盒回归方法进行了比较,用于行人目标建议的定位细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian optimization for refining object proposals
We develop a general-purpose algorithm using a Bayesian optimization framework for the efficient refinement of object proposals. While recent research has achieved substantial progress for object localization and related objectives in computer vision, current state-of-the-art object localization procedures are nevertheless encumbered by inefficiency and inaccuracy. We present a novel, computationally efficient method for refining inaccurate bounding-box proposals for a target object using Bayesian optimization. Offline, image features from a convolutional neural network are used to train a model to predict an object proposal's offset distance from a target object. Online, this model is used in a Bayesian active search to improve inaccurate object proposals. In experiments, we compare our approach to a state-of-the-art bounding-box regression method for localization refinement of pedestrian object proposals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信