从具有任务和数据并行性的Simulink模型生成代码

Pin Xu, M. Edahiro, Kondo Masaki
{"title":"从具有任务和数据并行性的Simulink模型生成代码","authors":"Pin Xu, M. Edahiro, Kondo Masaki","doi":"10.24297/IJCT.V21I.9004","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to automatically generate parallelized code from Simulink models, while exploiting both task and data parallelism. Building on previous research, we propose a model-based parallelizer (MBP) that exploits task parallelism and assigns tasks to CPU cores using a hierarchical clustering method. We also propose amethod in which data-parallel SYCL code is generated from Simulink models; computations with data parallelism are expressed in the form of S-Function Builder blocks and are executed in a heterogeneous computing environment. Most parts of the procedure can be automated with scripts, and the two methods can be applied together. In the evaluation, the data-parallel programs generated using our proposed method achieved a maximum speedup of approximately 547 times, compared to sequential programs, without observable differences in the computed results. In addition, the programs generated while exploiting both task and data parallelism were confirmed to have achieved better performance than those exploiting either one of the two.","PeriodicalId":161820,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Code Generation from Simulink Models with Task and Data Parallelism\",\"authors\":\"Pin Xu, M. Edahiro, Kondo Masaki\",\"doi\":\"10.24297/IJCT.V21I.9004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to automatically generate parallelized code from Simulink models, while exploiting both task and data parallelism. Building on previous research, we propose a model-based parallelizer (MBP) that exploits task parallelism and assigns tasks to CPU cores using a hierarchical clustering method. We also propose amethod in which data-parallel SYCL code is generated from Simulink models; computations with data parallelism are expressed in the form of S-Function Builder blocks and are executed in a heterogeneous computing environment. Most parts of the procedure can be automated with scripts, and the two methods can be applied together. In the evaluation, the data-parallel programs generated using our proposed method achieved a maximum speedup of approximately 547 times, compared to sequential programs, without observable differences in the computed results. In addition, the programs generated while exploiting both task and data parallelism were confirmed to have achieved better performance than those exploiting either one of the two.\",\"PeriodicalId\":161820,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/IJCT.V21I.9004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/IJCT.V21I.9004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种从Simulink模型自动生成并行代码的方法,同时利用任务和数据并行性。在前人研究的基础上,我们提出了一种基于模型的并行化(MBP)方法,该方法利用任务并行性并使用分层聚类方法将任务分配给CPU内核。我们还提出了从Simulink模型生成数据并行SYCL代码的方法;具有数据并行性的计算以S-Function Builder块的形式表示,并在异构计算环境中执行。该过程的大多数部分都可以通过脚本实现自动化,并且这两种方法可以一起应用。在评估中,与顺序程序相比,使用我们提出的方法生成的数据并行程序获得了大约547倍的最大加速,计算结果没有明显差异。此外,同时利用任务并行性和数据并行性生成的程序被证实比利用两者中的任何一个都获得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code Generation from Simulink Models with Task and Data Parallelism
In this paper, we propose a method to automatically generate parallelized code from Simulink models, while exploiting both task and data parallelism. Building on previous research, we propose a model-based parallelizer (MBP) that exploits task parallelism and assigns tasks to CPU cores using a hierarchical clustering method. We also propose amethod in which data-parallel SYCL code is generated from Simulink models; computations with data parallelism are expressed in the form of S-Function Builder blocks and are executed in a heterogeneous computing environment. Most parts of the procedure can be automated with scripts, and the two methods can be applied together. In the evaluation, the data-parallel programs generated using our proposed method achieved a maximum speedup of approximately 547 times, compared to sequential programs, without observable differences in the computed results. In addition, the programs generated while exploiting both task and data parallelism were confirmed to have achieved better performance than those exploiting either one of the two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信