多类极大极小概率机

Tat-Dat Dang, Ha-Nam Nguyen
{"title":"多类极大极小概率机","authors":"Tat-Dat Dang, Ha-Nam Nguyen","doi":"10.1109/KSE.2009.46","DOIUrl":null,"url":null,"abstract":"This paper investigates the multi-class Minimax Probability Machine (MPM). MPM constructs a binary classifier that provides a worst-case bound on the probability of misclassification of future data points, based on reliable estimates of means and covariance matrices of the classes from the training data points. We propose a method to adapt MPM to multi-class datasets using the one-against-all strategy. And then we introduce an optimal kernel for MPM for each specific dataset found by Genetic Algorithms (GA) [1]. The proposed method was evaluated on stomach cancer data. The obtained results are better and more stable than for using a single kernel.","PeriodicalId":347175,"journal":{"name":"2009 International Conference on Knowledge and Systems Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-class Minimax Probability Machine\",\"authors\":\"Tat-Dat Dang, Ha-Nam Nguyen\",\"doi\":\"10.1109/KSE.2009.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the multi-class Minimax Probability Machine (MPM). MPM constructs a binary classifier that provides a worst-case bound on the probability of misclassification of future data points, based on reliable estimates of means and covariance matrices of the classes from the training data points. We propose a method to adapt MPM to multi-class datasets using the one-against-all strategy. And then we introduce an optimal kernel for MPM for each specific dataset found by Genetic Algorithms (GA) [1]. The proposed method was evaluated on stomach cancer data. The obtained results are better and more stable than for using a single kernel.\",\"PeriodicalId\":347175,\"journal\":{\"name\":\"2009 International Conference on Knowledge and Systems Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2009.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了多类极小极大概率机(MPM)。MPM构建了一个二元分类器,该分类器基于对来自训练数据点的类的均值和协方差矩阵的可靠估计,提供了未来数据点错误分类概率的最坏情况边界。我们提出了一种使用“一对全”策略使MPM适应多类数据集的方法。然后,我们为每个由遗传算法(GA)找到的特定数据集引入MPM的最优核[1]。用胃癌数据对该方法进行了评价。得到的结果比使用单个内核的结果更好、更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-class Minimax Probability Machine
This paper investigates the multi-class Minimax Probability Machine (MPM). MPM constructs a binary classifier that provides a worst-case bound on the probability of misclassification of future data points, based on reliable estimates of means and covariance matrices of the classes from the training data points. We propose a method to adapt MPM to multi-class datasets using the one-against-all strategy. And then we introduce an optimal kernel for MPM for each specific dataset found by Genetic Algorithms (GA) [1]. The proposed method was evaluated on stomach cancer data. The obtained results are better and more stable than for using a single kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信