对Baum-Connes和Davis-L ' uck组装图的鉴定

J. Kranz
{"title":"对Baum-Connes和Davis-L ' uck组装图的鉴定","authors":"J. Kranz","doi":"10.17879/06089641898","DOIUrl":null,"url":null,"abstract":"The Baum-Connes conjecture predicts that a certain assembly map is an isomorphism. We identify the homotopy theoretical construction of the assembly map by Davis and Luck with the category theoretical construction by Meyer and Nest. This extends the result of Hambleton and Pedersen to arbitrary coefficients. Our approach uses abstract properties rather than explicit constructions and is formally similar to Meyer's and Nest's identification of their assembly map with the original construction of the assembly map by Baum, Connes and Higson.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An identification of the Baum-Connes and Davis-L\\\\\\\"uck assembly maps\",\"authors\":\"J. Kranz\",\"doi\":\"10.17879/06089641898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Baum-Connes conjecture predicts that a certain assembly map is an isomorphism. We identify the homotopy theoretical construction of the assembly map by Davis and Luck with the category theoretical construction by Meyer and Nest. This extends the result of Hambleton and Pedersen to arbitrary coefficients. Our approach uses abstract properties rather than explicit constructions and is formally similar to Meyer's and Nest's identification of their assembly map with the original construction of the assembly map by Baum, Connes and Higson.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17879/06089641898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17879/06089641898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Baum-Connes猜想预测某个装配映射是同构的。我们将Davis和Luck的同伦理论建构与Meyer和Nest的范畴理论建构进行了区分。这将Hambleton和Pedersen的结果推广到任意系数。我们的方法使用抽象的属性,而不是明确的结构,形式上类似于Meyer和Nest用Baum、Connes和Higson的组装图的原始结构识别他们的组装图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An identification of the Baum-Connes and Davis-L\"uck assembly maps
The Baum-Connes conjecture predicts that a certain assembly map is an isomorphism. We identify the homotopy theoretical construction of the assembly map by Davis and Luck with the category theoretical construction by Meyer and Nest. This extends the result of Hambleton and Pedersen to arbitrary coefficients. Our approach uses abstract properties rather than explicit constructions and is formally similar to Meyer's and Nest's identification of their assembly map with the original construction of the assembly map by Baum, Connes and Higson.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信