基于图逼近的社区学习

Bo Long, Xiaoyun Xu, Zhongfei Zhang, Philip S. Yu
{"title":"基于图逼近的社区学习","authors":"Bo Long, Xiaoyun Xu, Zhongfei Zhang, Philip S. Yu","doi":"10.1109/ICDM.2007.42","DOIUrl":null,"url":null,"abstract":"Learning communities from a graph is an important problem in many domains. Different types of communities can be generalized as link-pattern based communities. In this paper, we propose a general model based on graph approximation to learn link-pattern based community structures from a graph. The model generalizes the traditional graph partitioning approaches and is applicable to learning various community structures. Under this model, we derive a family of algorithms which are flexible to learn various community structures and easy to incorporate the prior knowledge of the community structures. Experimental evaluation and theoretical analysis show the effectiveness and great potential of the proposed model and algorithms.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Community Learning by Graph Approximation\",\"authors\":\"Bo Long, Xiaoyun Xu, Zhongfei Zhang, Philip S. Yu\",\"doi\":\"10.1109/ICDM.2007.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning communities from a graph is an important problem in many domains. Different types of communities can be generalized as link-pattern based communities. In this paper, we propose a general model based on graph approximation to learn link-pattern based community structures from a graph. The model generalizes the traditional graph partitioning approaches and is applicable to learning various community structures. Under this model, we derive a family of algorithms which are flexible to learn various community structures and easy to incorporate the prior knowledge of the community structures. Experimental evaluation and theoretical analysis show the effectiveness and great potential of the proposed model and algorithms.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

从图中学习社区在许多领域都是一个重要的问题。不同类型的社区可以概括为基于链接模式的社区。本文提出了一种基于图近似的通用模型,用于从图中学习基于链接模式的社区结构。该模型推广了传统的图划分方法,适用于各种社区结构的学习。在此模型下,我们导出了一组算法,该算法能够灵活地学习各种社区结构,并且易于纳入社区结构的先验知识。实验评价和理论分析表明了所提模型和算法的有效性和巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Community Learning by Graph Approximation
Learning communities from a graph is an important problem in many domains. Different types of communities can be generalized as link-pattern based communities. In this paper, we propose a general model based on graph approximation to learn link-pattern based community structures from a graph. The model generalizes the traditional graph partitioning approaches and is applicable to learning various community structures. Under this model, we derive a family of algorithms which are flexible to learn various community structures and easy to incorporate the prior knowledge of the community structures. Experimental evaluation and theoretical analysis show the effectiveness and great potential of the proposed model and algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信