Aldin Berisa, M. Ashjaei, M. Daneshtalab, Mikael Sjödin, S. Mubeen
{"title":"调查和分析CAN-to-TSN网关转发技术","authors":"Aldin Berisa, M. Ashjaei, M. Daneshtalab, Mikael Sjödin, S. Mubeen","doi":"10.1109/ISORC58943.2023.00026","DOIUrl":null,"url":null,"abstract":"Controller Area Network (CAN) and Ethernet network are expected to co-exist in automotive industry as Ethernet provides a high-bandwidth communication, while CAN is a legacy cost-effective solution. Due to the shortcomings of conventional switched Etherent, such as determinism, IEEE Time Sensitive Networking (TSN) task group developed a set of standards to enhance the switched Ethernet technology providing low-jitter and deterministic communication. Considering these two network domains, we investigate various design approaches for a gateway that connects a CAN domain to a TSN domain. We present three gateway forwarding techniques and we develop end-to-end delay analysis methods for them. Via the analysis methods and applying them to synthetic use cases we show that the intuitive existing approach of encapsulating multiple CAN frames into a single Ethernet frame is not necessarily an efficient solution. In fact, we demonstrate several cases where it is preferable to encapsulate only one CAN frame into a TSN frame, in particular when we use a high speed TSN network. The results have a significant impact on developing such gateways as the implementation of the one-to-one frame encapsulation is considerably simpler than other complex gateway-forwarding techniques.","PeriodicalId":281426,"journal":{"name":"2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating and Analyzing CAN-to-TSN Gateway Forwarding Techniques\",\"authors\":\"Aldin Berisa, M. Ashjaei, M. Daneshtalab, Mikael Sjödin, S. Mubeen\",\"doi\":\"10.1109/ISORC58943.2023.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controller Area Network (CAN) and Ethernet network are expected to co-exist in automotive industry as Ethernet provides a high-bandwidth communication, while CAN is a legacy cost-effective solution. Due to the shortcomings of conventional switched Etherent, such as determinism, IEEE Time Sensitive Networking (TSN) task group developed a set of standards to enhance the switched Ethernet technology providing low-jitter and deterministic communication. Considering these two network domains, we investigate various design approaches for a gateway that connects a CAN domain to a TSN domain. We present three gateway forwarding techniques and we develop end-to-end delay analysis methods for them. Via the analysis methods and applying them to synthetic use cases we show that the intuitive existing approach of encapsulating multiple CAN frames into a single Ethernet frame is not necessarily an efficient solution. In fact, we demonstrate several cases where it is preferable to encapsulate only one CAN frame into a TSN frame, in particular when we use a high speed TSN network. The results have a significant impact on developing such gateways as the implementation of the one-to-one frame encapsulation is considerably simpler than other complex gateway-forwarding techniques.\",\"PeriodicalId\":281426,\"journal\":{\"name\":\"2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC58943.2023.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC58943.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating and Analyzing CAN-to-TSN Gateway Forwarding Techniques
Controller Area Network (CAN) and Ethernet network are expected to co-exist in automotive industry as Ethernet provides a high-bandwidth communication, while CAN is a legacy cost-effective solution. Due to the shortcomings of conventional switched Etherent, such as determinism, IEEE Time Sensitive Networking (TSN) task group developed a set of standards to enhance the switched Ethernet technology providing low-jitter and deterministic communication. Considering these two network domains, we investigate various design approaches for a gateway that connects a CAN domain to a TSN domain. We present three gateway forwarding techniques and we develop end-to-end delay analysis methods for them. Via the analysis methods and applying them to synthetic use cases we show that the intuitive existing approach of encapsulating multiple CAN frames into a single Ethernet frame is not necessarily an efficient solution. In fact, we demonstrate several cases where it is preferable to encapsulate only one CAN frame into a TSN frame, in particular when we use a high speed TSN network. The results have a significant impact on developing such gateways as the implementation of the one-to-one frame encapsulation is considerably simpler than other complex gateway-forwarding techniques.