具有图相关元素的大样本协方差矩阵的极限谱分布

P. Yaskov
{"title":"具有图相关元素的大样本协方差矩阵的极限谱分布","authors":"P. Yaskov","doi":"10.1137/s0040585x97t991003","DOIUrl":null,"url":null,"abstract":"We obtain the limiting spectral distribution for large sample covariance matrices associated with random vectors having graph-dependent entries under the assumption that the interdependence among the entries grows with the sample size n. Our results are tight. In particular, they give necessary and sufficient conditions for the Marchenko-Pastur theorem for sample covariance matrices with m-dependent orthonormal elements when m = o(n).","PeriodicalId":141584,"journal":{"name":"Theory of Probability & Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limiting Spectral Distribution for Large Sample Covariance Matrices with Graph-Dependent Elements\",\"authors\":\"P. Yaskov\",\"doi\":\"10.1137/s0040585x97t991003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the limiting spectral distribution for large sample covariance matrices associated with random vectors having graph-dependent entries under the assumption that the interdependence among the entries grows with the sample size n. Our results are tight. In particular, they give necessary and sufficient conditions for the Marchenko-Pastur theorem for sample covariance matrices with m-dependent orthonormal elements when m = o(n).\",\"PeriodicalId\":141584,\"journal\":{\"name\":\"Theory of Probability & Its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability & Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们得到了与具有图依赖条目的随机向量相关的大样本协方差矩阵的极限谱分布,假设条目之间的相互依赖关系随着样本量n的增加而增加。我们的结果是紧密的。特别是,当m = 0 (n)时,给出了具有m相关正交元素的样本协方差矩阵的Marchenko-Pastur定理的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting Spectral Distribution for Large Sample Covariance Matrices with Graph-Dependent Elements
We obtain the limiting spectral distribution for large sample covariance matrices associated with random vectors having graph-dependent entries under the assumption that the interdependence among the entries grows with the sample size n. Our results are tight. In particular, they give necessary and sufficient conditions for the Marchenko-Pastur theorem for sample covariance matrices with m-dependent orthonormal elements when m = o(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信