兴趣点检测器的自动评估

S. Lang, M. Luerssen, D. Powers
{"title":"兴趣点检测器的自动评估","authors":"S. Lang, M. Luerssen, D. Powers","doi":"10.4018/ijsi.2014010107","DOIUrl":null,"url":null,"abstract":"Interest point detectors are important components in a variety of computer vision systems. This paper demonstrates an automated virtual 3D environment for controlling and measuring detected interest points on 2D images in an accurate and rapid manner. Real-time affine transform tools enable easy implementation and full automation of complex scene evaluations without the time-cost of a manual setup. Nine detectors are tested and compared using evaluation and testing methods based on Schmid [18]. Each detector is tested on the BSDS500 image set using rotation in the X, Y, and Z axis as well as scale in the X, Y axis. Results demonstrate the differing performance and behaviour of each detector across the evaluated transformations, which may assist computer vision practitioners in choosing the right detector for their application.","PeriodicalId":345020,"journal":{"name":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automated evaluation of interest point detectors\",\"authors\":\"S. Lang, M. Luerssen, D. Powers\",\"doi\":\"10.4018/ijsi.2014010107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interest point detectors are important components in a variety of computer vision systems. This paper demonstrates an automated virtual 3D environment for controlling and measuring detected interest points on 2D images in an accurate and rapid manner. Real-time affine transform tools enable easy implementation and full automation of complex scene evaluations without the time-cost of a manual setup. Nine detectors are tested and compared using evaluation and testing methods based on Schmid [18]. Each detector is tested on the BSDS500 image set using rotation in the X, Y, and Z axis as well as scale in the X, Y axis. Results demonstrate the differing performance and behaviour of each detector across the evaluated transformations, which may assist computer vision practitioners in choosing the right detector for their application.\",\"PeriodicalId\":345020,\"journal\":{\"name\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.2014010107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.2014010107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

兴趣点检测器是各种计算机视觉系统的重要组成部分。本文演示了一种自动化的虚拟三维环境,用于精确、快速地控制和测量二维图像上检测到的兴趣点。实时仿射变换工具可以轻松实现和完全自动化复杂的场景评估,而无需手动设置的时间成本。使用基于Schmid[18]的评估和测试方法对9个探测器进行测试和比较。在BSDS500图像集上测试每个检测器,使用X、Y和Z轴上的旋转以及X、Y轴上的缩放。结果表明,在评估的转换中,每个检测器的不同性能和行为,这可能有助于计算机视觉从业者为其应用选择正确的检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated evaluation of interest point detectors
Interest point detectors are important components in a variety of computer vision systems. This paper demonstrates an automated virtual 3D environment for controlling and measuring detected interest points on 2D images in an accurate and rapid manner. Real-time affine transform tools enable easy implementation and full automation of complex scene evaluations without the time-cost of a manual setup. Nine detectors are tested and compared using evaluation and testing methods based on Schmid [18]. Each detector is tested on the BSDS500 image set using rotation in the X, Y, and Z axis as well as scale in the X, Y axis. Results demonstrate the differing performance and behaviour of each detector across the evaluated transformations, which may assist computer vision practitioners in choosing the right detector for their application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信