{"title":"基于Vivado高级综合(HLS)的高级加密标准(AES)优化","authors":"Luka Daoud, F. Hussein, N. Rafla","doi":"10.29007/X3TX","DOIUrl":null,"url":null,"abstract":"Advanced Encryption Standard (AES) represents a fundamental building module of many network security protocols to ensure data confidentiality in various applications ranging from data servers to low-power hardware embedded systems. In order to optimize such hardware implementations, High-Level Synthesis (HLS) provides flexibility in designing and rapid optimization of dedicated hardware to meet the design constraints. In this paper, we present the implementation of AES encryption processor on FPGA using Xilinx Vivado HLS. The AES architecture was analyzed and designed by loop unrolling, and inner-round and outer-round pipelining techniques to achieve a maximum throughput of the AES algorithm up to 1290 Mbps (Mega bit per second) with very significant low resources of 3.24% slices of the FPGA, achieving 3 Mbps per slice area. keywords: Advanced Encryption Standard, AES, High Level Synthesis, HLS, Optimization, High throughput, Low area resources, Zynq, FPGA.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimization of Advanced Encryption Standard (AES) Using Vivado High Level Synthesis (HLS)\",\"authors\":\"Luka Daoud, F. Hussein, N. Rafla\",\"doi\":\"10.29007/X3TX\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Encryption Standard (AES) represents a fundamental building module of many network security protocols to ensure data confidentiality in various applications ranging from data servers to low-power hardware embedded systems. In order to optimize such hardware implementations, High-Level Synthesis (HLS) provides flexibility in designing and rapid optimization of dedicated hardware to meet the design constraints. In this paper, we present the implementation of AES encryption processor on FPGA using Xilinx Vivado HLS. The AES architecture was analyzed and designed by loop unrolling, and inner-round and outer-round pipelining techniques to achieve a maximum throughput of the AES algorithm up to 1290 Mbps (Mega bit per second) with very significant low resources of 3.24% slices of the FPGA, achieving 3 Mbps per slice area. keywords: Advanced Encryption Standard, AES, High Level Synthesis, HLS, Optimization, High throughput, Low area resources, Zynq, FPGA.\",\"PeriodicalId\":264035,\"journal\":{\"name\":\"International Conference on Computers and Their Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/X3TX\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/X3TX","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Advanced Encryption Standard (AES) Using Vivado High Level Synthesis (HLS)
Advanced Encryption Standard (AES) represents a fundamental building module of many network security protocols to ensure data confidentiality in various applications ranging from data servers to low-power hardware embedded systems. In order to optimize such hardware implementations, High-Level Synthesis (HLS) provides flexibility in designing and rapid optimization of dedicated hardware to meet the design constraints. In this paper, we present the implementation of AES encryption processor on FPGA using Xilinx Vivado HLS. The AES architecture was analyzed and designed by loop unrolling, and inner-round and outer-round pipelining techniques to achieve a maximum throughput of the AES algorithm up to 1290 Mbps (Mega bit per second) with very significant low resources of 3.24% slices of the FPGA, achieving 3 Mbps per slice area. keywords: Advanced Encryption Standard, AES, High Level Synthesis, HLS, Optimization, High throughput, Low area resources, Zynq, FPGA.