NavWalker:信息增强网络嵌入

Kwei-Herng Lai, Chih-Ming Chen, Ming-Feng Tsai, Chuan-Ju Wang
{"title":"NavWalker:信息增强网络嵌入","authors":"Kwei-Herng Lai, Chih-Ming Chen, Ming-Feng Tsai, Chuan-Ju Wang","doi":"10.1109/WI.2018.0-113","DOIUrl":null,"url":null,"abstract":"We present NavWalker, a flexible random walk-based approach for learning the representations of vertices in an information network. The proposed method enables us to incorporate different walk strategies into the sampling process of random walks, in order to further boost the network embedding techniques. Specifically, we formulate the proposed method by integrating the adjacency matrix of a network with a pre-defined information augmentation matrix. In contrast to SkipGram-based network embedding methods such as DeepWalk and Node2vec, which use only local network information to learn the representations, our method is flexible to further incorporate global or other auxiliary network information to guide the sampling process. Experiments on six real-world datasets demonstrate the advantages of the flexibility and its superior performance as compared to other state-of-the-art network embedding algorithms for the tasks of classification and recommendation.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NavWalker: Information Augmented Network Embedding\",\"authors\":\"Kwei-Herng Lai, Chih-Ming Chen, Ming-Feng Tsai, Chuan-Ju Wang\",\"doi\":\"10.1109/WI.2018.0-113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present NavWalker, a flexible random walk-based approach for learning the representations of vertices in an information network. The proposed method enables us to incorporate different walk strategies into the sampling process of random walks, in order to further boost the network embedding techniques. Specifically, we formulate the proposed method by integrating the adjacency matrix of a network with a pre-defined information augmentation matrix. In contrast to SkipGram-based network embedding methods such as DeepWalk and Node2vec, which use only local network information to learn the representations, our method is flexible to further incorporate global or other auxiliary network information to guide the sampling process. Experiments on six real-world datasets demonstrate the advantages of the flexibility and its superior performance as compared to other state-of-the-art network embedding algorithms for the tasks of classification and recommendation.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.0-113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.0-113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了NavWalker,一种灵活的基于随机行走的方法,用于学习信息网络中顶点的表示。该方法使我们能够在随机行走的采样过程中加入不同的行走策略,从而进一步提高网络嵌入技术。具体而言,我们通过将网络的邻接矩阵与预定义的信息增强矩阵集成来制定所提出的方法。与基于skipgram的网络嵌入方法(如DeepWalk和Node2vec)仅使用局部网络信息来学习表征相比,我们的方法可以灵活地进一步加入全局或其他辅助网络信息来指导采样过程。在六个真实数据集上的实验表明,与其他最先进的网络嵌入算法相比,该算法在分类和推荐任务方面具有灵活性和优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NavWalker: Information Augmented Network Embedding
We present NavWalker, a flexible random walk-based approach for learning the representations of vertices in an information network. The proposed method enables us to incorporate different walk strategies into the sampling process of random walks, in order to further boost the network embedding techniques. Specifically, we formulate the proposed method by integrating the adjacency matrix of a network with a pre-defined information augmentation matrix. In contrast to SkipGram-based network embedding methods such as DeepWalk and Node2vec, which use only local network information to learn the representations, our method is flexible to further incorporate global or other auxiliary network information to guide the sampling process. Experiments on six real-world datasets demonstrate the advantages of the flexibility and its superior performance as compared to other state-of-the-art network embedding algorithms for the tasks of classification and recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信