Man Zhu, Zhiqiang Gao, Jeff Z. Pan, Yuting Zhao, Ying Xu, Zhibin Quan
{"title":"基于BelNet的不完全语义网数据本体学习","authors":"Man Zhu, Zhiqiang Gao, Jeff Z. Pan, Yuting Zhao, Ying Xu, Zhibin Quan","doi":"10.1109/ICTAI.2013.117","DOIUrl":null,"url":null,"abstract":"Recent years have seen a dramatic growth of semantic web on the data level, but unfortunately not on the schema level, which contains mostly concept hierarchies. The shortage of schemas makes the semantic web data difficult to be used in many semantic web applications, so schemas learning from semantic web data becomes an increasingly pressing issue. In this paper we propose a novel schemas learning approach -BelNet, which combines description logics (DLs) with Bayesian networks. In this way BelNet is capable to understand and capture the semantics of the data on the one hand, and to handle incompleteness during the learning procedure on the other hand. The main contributions of this work are: (i)we introduce the architecture of BelNet, and corresponding lypropose the ontology learning techniques in it, (ii) we compare the experimental results of our approach with the state-of-the-art ontology learning approaches, and provide discussions from different aspects.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Ontology Learning from Incomplete Semantic Web Data by BelNet\",\"authors\":\"Man Zhu, Zhiqiang Gao, Jeff Z. Pan, Yuting Zhao, Ying Xu, Zhibin Quan\",\"doi\":\"10.1109/ICTAI.2013.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen a dramatic growth of semantic web on the data level, but unfortunately not on the schema level, which contains mostly concept hierarchies. The shortage of schemas makes the semantic web data difficult to be used in many semantic web applications, so schemas learning from semantic web data becomes an increasingly pressing issue. In this paper we propose a novel schemas learning approach -BelNet, which combines description logics (DLs) with Bayesian networks. In this way BelNet is capable to understand and capture the semantics of the data on the one hand, and to handle incompleteness during the learning procedure on the other hand. The main contributions of this work are: (i)we introduce the architecture of BelNet, and corresponding lypropose the ontology learning techniques in it, (ii) we compare the experimental results of our approach with the state-of-the-art ontology learning approaches, and provide discussions from different aspects.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ontology Learning from Incomplete Semantic Web Data by BelNet
Recent years have seen a dramatic growth of semantic web on the data level, but unfortunately not on the schema level, which contains mostly concept hierarchies. The shortage of schemas makes the semantic web data difficult to be used in many semantic web applications, so schemas learning from semantic web data becomes an increasingly pressing issue. In this paper we propose a novel schemas learning approach -BelNet, which combines description logics (DLs) with Bayesian networks. In this way BelNet is capable to understand and capture the semantics of the data on the one hand, and to handle incompleteness during the learning procedure on the other hand. The main contributions of this work are: (i)we introduce the architecture of BelNet, and corresponding lypropose the ontology learning techniques in it, (ii) we compare the experimental results of our approach with the state-of-the-art ontology learning approaches, and provide discussions from different aspects.