利用BERT、DistilBERT和RoBERTa分析情感分析的性能

Archa Joshy, S. Sundar
{"title":"利用BERT、DistilBERT和RoBERTa分析情感分析的性能","authors":"Archa Joshy, S. Sundar","doi":"10.1109/IPRECON55716.2022.10059542","DOIUrl":null,"url":null,"abstract":"Sentiment analysis or opinion mining is a natural language processing (NLP) technique to identify, extract, and quantify the emotional tone behind a body of text. It helps to capture public opinion and user interests on various topics based on comments on social events, product reviews, film reviews, etc. Linear Regression, Support Vector Machines, Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), LSTM (Long Short Term Memory), and other machine learning and deep learning algorithms can be used to analyze the sentiment behind a text. This work analyses the sentiments behind movie reviews and tweets using the Coronavirus tweets NLP dataset and Sentiment140 dataset. Three advanced transformer-based deep learning models like BERT, DistilBERT, and RoBERTa are experimented with to perform the sentiment analysis. Finally, the performance obtained using these models on these two different datasets is compared using the accuracy as the performance evaluation matrix. On analyzing the performance, it can be seen that the BERT model outperforms the other two models.","PeriodicalId":407222,"journal":{"name":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyzing the Performance of Sentiment Analysis using BERT, DistilBERT, and RoBERTa\",\"authors\":\"Archa Joshy, S. Sundar\",\"doi\":\"10.1109/IPRECON55716.2022.10059542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis or opinion mining is a natural language processing (NLP) technique to identify, extract, and quantify the emotional tone behind a body of text. It helps to capture public opinion and user interests on various topics based on comments on social events, product reviews, film reviews, etc. Linear Regression, Support Vector Machines, Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), LSTM (Long Short Term Memory), and other machine learning and deep learning algorithms can be used to analyze the sentiment behind a text. This work analyses the sentiments behind movie reviews and tweets using the Coronavirus tweets NLP dataset and Sentiment140 dataset. Three advanced transformer-based deep learning models like BERT, DistilBERT, and RoBERTa are experimented with to perform the sentiment analysis. Finally, the performance obtained using these models on these two different datasets is compared using the accuracy as the performance evaluation matrix. On analyzing the performance, it can be seen that the BERT model outperforms the other two models.\",\"PeriodicalId\":407222,\"journal\":{\"name\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPRECON55716.2022.10059542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPRECON55716.2022.10059542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

情感分析或观点挖掘是一种自然语言处理(NLP)技术,用于识别、提取和量化文本正文背后的情感语气。它可以根据对社会事件、产品评论、电影评论等的评论,捕捉公众意见和用户对各种主题的兴趣。线性回归、支持向量机、卷积神经网络(CNN)、循环神经网络(RNN)、LSTM(长短期记忆)以及其他机器学习和深度学习算法都可以用来分析文本背后的情感。这项工作使用冠状病毒推文NLP数据集和Sentiment140数据集分析了电影评论和推文背后的情绪。三个先进的基于变换的深度学习模型,如BERT,蒸馏伯特,和RoBERTa进行了实验,以执行情感分析。最后,以准确率为性能评价矩阵,比较了模型在两种不同数据集上的性能。通过性能分析可以看出,BERT模型的性能优于其他两种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Performance of Sentiment Analysis using BERT, DistilBERT, and RoBERTa
Sentiment analysis or opinion mining is a natural language processing (NLP) technique to identify, extract, and quantify the emotional tone behind a body of text. It helps to capture public opinion and user interests on various topics based on comments on social events, product reviews, film reviews, etc. Linear Regression, Support Vector Machines, Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), LSTM (Long Short Term Memory), and other machine learning and deep learning algorithms can be used to analyze the sentiment behind a text. This work analyses the sentiments behind movie reviews and tweets using the Coronavirus tweets NLP dataset and Sentiment140 dataset. Three advanced transformer-based deep learning models like BERT, DistilBERT, and RoBERTa are experimented with to perform the sentiment analysis. Finally, the performance obtained using these models on these two different datasets is compared using the accuracy as the performance evaluation matrix. On analyzing the performance, it can be seen that the BERT model outperforms the other two models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信